
Tell us about your PDF experience.

Core Audio APIs
Article01/24/2023

Overview of the Core Audio APIs technology.

To develop Core Audio APIs, you need these headers:

audioclient.h
audioendpoints.h
audioenginebaseapo.h
audioengineendpoint.h
audiopolicy.h
audiosessiontypes.h
audiostatemonitorapi.h
devicetopology.h
endpointvolume.h
mmdeviceapi.h
spatialaudioclient.h
spatialaudiohrtf.h
spatialaudiometadata.h

For programming guidance for this technology, see:

Core Audio APIs

 

_AUDCLNT_BUFFERFLAGS  

The _AUDCLNT_BUFFERFLAGS enumeration defines flags that indicate the status of an audio
endpoint buffer.

AUDCLNT_SHAREMODE  

The AUDCLNT_SHAREMODE enumeration defines constants that indicate whether an audio
stream will run in shared mode or in exclusive mode.

AUDCLNT_STREAMOPTIONS  

Defines values that describe the characteristics of an audio stream.

Enumerations

https://learn.microsoft.com/en-us/windows/desktop/coreaudio
https://aka.ms/learn-pdf-feedback


 

AUDIO_DUCKING_OPTIONS  

Specifies audio ducking options. Use values from this enumeration when calling
IAudioClientDuckingControl::SetDuckingOptionsForCurrentStream

AUDIO_EFFECT_STATE  

Specifies the state of an audio effect.

AUDIO_STREAM_CATEGORY  

Specifies the category of an audio stream.

AUDIOCLIENT_ACTIVATION_TYPE  

Specifies the activation type for an AUDIOCLIENT_ACTIVATION_PARAMS structure passed into a
call to ActivateAudioInterfaceAsync.

AudioObjectType  

Specifies the type of an ISpatialAudioObject.

AudioSessionState  

The AudioSessionState enumeration defines constants that indicate the current state of an audio
session.

AudioStateMonitorSoundLevel  

ConnectorType  

The ConnectorType enumeration indicates the type of connection that a connector is part of.

DataFlow  

The DataFlow enumeration indicates the data-flow direction of an audio stream through a
connector.

EDataFlow  

The EDataFlow enumeration defines constants that indicate the direction in which audio data
flows between an audio endpoint device and an application.

EndpointFormFactor  

The EndpointFormFactor enumeration defines constants that indicate the general physical
attributes of an audio endpoint device.



 

ERole  

The ERole enumeration defines constants that indicate the role that the system has assigned to an
audio endpoint device.

KSJACK_SINK_CONNECTIONTYPE  

The KSJACK_SINK_CONNECTIONTYPE enumeration defines constants that specify the type of
connection. These values are used in the KSJACK_SINK_INFORMATION structure that stores
information about an audio jack sink.

PartType  

The PartType enumeration defines constants that indicate whether a part in a device topology is a
connector or subunit.

PROCESS_LOOPBACK_MODE  

Specifies the loopback mode for an AUDIOCLIENT_ACTIVATION_PARAMS structure passed into a
call to ActivateAudioInterfaceAsync.

SPATIAL_AUDIO_STREAM_OPTIONS  

Specifies audio stream options for calls to ActivateSpatialAudioStream.

SpatialAudioHrtfDirectivityType  

Specifies the shape in which sound is emitted by an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDistanceDecayType  

Specifies the type of decay applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

SpatialAudioHrtfEnvironmentType  

Specifies the type of acoustic environment that is simulated when audio is processed for an
ISpatialAudioObjectForHrtf.

SpatialAudioMetadataCopyMode  

Specifies the copy mode used when calling
ISpatialAudioMetadataCopier::CopyMetadataForFrames.

SpatialAudioMetadataWriterOverflowMode  

Specifies the desired behavior when an ISpatialAudioMetadataWriter attempts to write more
items into the metadata buffer than was specified when the client was initialized.



 

Activate  

The Activate method creates a COM object with the specified interface.

Activate  

The Activate method activates a function-specific interface on a connector or subunit.

ActivateAudioInterfaceAsync  

Enables Windows Store apps to access preexisting Component Object Model (COM) interfaces in
the WASAPI family.

ActivateCompleted  

Indicates that activation of a WASAPI interface is complete and results are available.

ActivateSpatialAudioMetadataCopier  

Creates an ISpatialAudioMetadataWriter object for copying spatial audio metadata items from
one ISpatialAudioMetadataItems object to another.

ActivateSpatialAudioMetadataItems  

Creates an ISpatialAudioMetadataItems object for storing spatial audio metadata items.

ActivateSpatialAudioMetadataReader  

Creates an ISpatialAudioMetadataWriter object for reading spatial audio metadata items from an
ISpatialAudioMetadataItems object.

ActivateSpatialAudioMetadataWriter  

Creates an ISpatialAudioMetadataWriter object for writing spatial audio metadata items to an
ISpatialAudioMetadataItems object.

ActivateSpatialAudioObject  

Activates an ISpatialAudioObject for audio rendering.

ActivateSpatialAudioObjectForHrtf  

Activates an ISpatialAudioObjectForHrtf for audio rendering.

Functions



 

ActivateSpatialAudioObjectForMetadataCommands  

Activate an ISpatialAudioObjectForMetadataCommands for rendering.

ActivateSpatialAudioObjectForMetadataItems  

Activate an ISpatialAudioObjectForMetadataItems for rendering.

ActivateSpatialAudioStream  

Activates and initializes spatial audio stream using one of the spatial audio stream activation
structures.

AttachToBuffer  

Attaches caller-provided memory for storage of ISpatialAudioMetadataItems objects.

AttachToPopulatedBuffer  

Attaches a previously populated buffer for storage of ISpatialAudioMetadataItems objects. The
metadata items already in the buffer are retained.

AudioStateMonitorCallback  

Occurs when the system changes the sound level of the audio streams being monitored by an
IAudioStreamStateMonitor.

BeginUpdatingAudioObjects  

Puts the system into the state where audio object data can be submitted for processing and the
ISpatialAudioObject state can be modified.

Close  

Completes any necessary operations on the SpatialAudioMetadataItems object and releases the
object. (ISpatialAudioMetadataCopier.Close)

Close  

Completes any necessary operations on the SpatialAudioMetadataItems object and releases the
object. (ISpatialAudioMetadataReader.Close)

Close  

Completes any needed operations on the metadata buffer and releases the specified
ISpatialAudioMetadataItems object.



 

ConnectTo  

The ConnectTo method connects this connector to a connector in another device-topology object.

CopyMetadataForFrames  

Copies metadata items from the source ISpatialAudioMetadataItems, provided to the Open
method, object to the destination ISpatialAudioMetadataItems object, specified with the
dstMetadataItems parameter.

CreateCaptureAudioStateMonitor  

Creates a new instance of IAudioStateMonitor for capture streams.

CreateCaptureAudioStateMonitorForCategory  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category.

CreateCaptureAudioStateMonitorForCategoryAndDeviceId  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category and audio device ID.

CreateCaptureAudioStateMonitorForCategoryAndDeviceRole  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category and audio device role.

CreateRenderAudioStateMonitor  

Creates a new instance of IAudioStateMonitor for render streams.

CreateRenderAudioStateMonitorForCategory  

Creates a new instance of IAudioStateMonitor for the render streams with the specified audio
category.

CreateRenderAudioStateMonitorForCategoryAndDeviceId  

Creates a new instance of IAudioStateMonitor for the render streams with the specified audio
category and audio device ID.

CreateRenderAudioStateMonitorForCategoryAndDeviceRole  

Creates a new instance of IAudioStateMonitor for render streams with the specified audio
category and audio device role.



 

DetachBuffer  

Detaches the buffer. Memory can only be attached to a single metadata item at a time.

Disconnect  

The Disconnect method disconnects this connector from another connector.

EndUpdatingAudioObjects  

Notifies the system that the app has finished supplying audio data for the spatial audio objects
activated with ActivateSpatialAudioObject.

EnumAudioEndpoints  

The EnumAudioEndpoints method generates a collection of audio endpoint devices that meet the
specified criteria.

EnumPartsIncoming  

The EnumPartsIncoming method gets a list of all the incoming parts�that is, the parts that reside
on data paths that are upstream from this part.

EnumPartsOutgoing  

The EnumPartsOutgoing method retrieves a list of all the outgoing parts�that is, the parts that
reside on data paths that are downstream from this part.

Get4BRange  

The Get4BRange method gets the 4-byte range of the device-specific property value.

GetActivateResult  

Gets the results of an asynchronous activation of a WASAPI interface initiated by an application
calling the ActivateAudioInterfaceAsync function.

GetAllVolumes  

The GetAllVolumes method retrieves the volume levels for all the channels in the audio stream.

GetAllVolumes  

The GetAllVolumes method retrieves the volume levels for all the channels in the audio session.

GetAudioEffects  

Gets the current list of audio effects for the associated audio stream.



 

GetAudioObjectType  

Gets a value specifying the type of audio object that is represented by the ISpatialAudioObject.

GetAudioSessionControl  

The GetAudioSessionControl method retrieves an audio session control.

GetAvailableDynamicObjectCount  

Gets the number of dynamic spatial audio objects that are currently available.

GetAvailableOffloadConnectorCount  

The GetAvailableOffloadConnectorCount method retrieves the number of available endpoints that
can handle offloaded streams on the hardware audio engine.

GetBuffer  

Gets a buffer that is used to supply the audio data for the ISpatialAudioObject.

GetBuffer  

Retrieves a pointer to the next available packet of data in the capture endpoint buffer.

GetBuffer  

Retrieves a pointer to the next available space in the rendering endpoint buffer into which the
caller can write a data packet.

GetBufferSize  

The GetBufferSize method retrieves the size (maximum capacity) of the endpoint buffer.

GetBufferSizeLimits  

The GetBufferSizeLimits method returns the buffer size limits of the hardware audio engine in
100-nanosecond units.

GetChannelConfig  

The GetChannelConfig method gets the current channel-configuration mask from a channel-
configuration control.

GetChannelCount  

The GetChannelCount method gets the number of channels in the audio stream.
(IAudioPeakMeter.GetChannelCount)



 

GetChannelCount  

The GetChannelCount method gets the number of channels in the audio stream.
(IPerChannelDbLevel.GetChannelCount)

GetChannelCount  

The GetChannelCount method retrieves the number of channels in the audio stream.

GetChannelCount  

The GetChannelCount method retrieves the number of channels in the stream format for the
audio session.

GetChannelCount  

The GetChannelCount method gets a count of the channels in the audio stream that enters or
leaves the audio endpoint device.

GetChannelsPeakValues  

The GetChannelsPeakValues method gets the peak sample values for all the channels in the audio
stream.

GetChannelVolume  

The GetChannelVolume method retrieves the volume level for the specified channel in the audio
stream.

GetChannelVolume  

The GetChannelVolume method retrieves the volume level for the specified channel in the audio
session.

GetChannelVolumeLevel  

The GetChannelVolumeLevel method gets the volume level, in decibels, of the specified channel in
the audio stream that enters or leaves the audio endpoint device.

GetChannelVolumeLevelScalar  

The GetChannelVolumeLevelScalar method gets the normalized, audio-tapered volume level of
the specified channel of the audio stream that enters or leaves the audio endpoint device.

GetChannelVolumes  

The GetChannelVolumes method retrieves the volume levels for the various audio channels in the
offloaded stream.



 

GetCharacteristics  

The GetCharacteristics method is reserved for future use.

GetConnectedTo  

The GetConnectedTo method gets the connector to which this connector is connected.

GetConnector  

The GetConnector method gets the connector that is specified by a connector number.

GetConnectorCount  

The GetConnectorCount method gets the number of connectors in the device-topology object.

GetConnectorIdConnectedTo  

The GetConnectorIdConnectedTo method gets the global ID of the connector, if any, that this
connector is connected to.

GetControlInterface  

The GetControlInterface method gets a reference to the specified control interface, if this part
supports it.

GetControlInterfaceCount  

The GetControlInterfaceCount method gets the number of control interfaces that this part
supports.

GetCount  

Gets the number of supported audio formats in the list.

GetCount  

The GetCount method retrieves a count of the devices in the device collection.

GetCount  

The GetCount method gets the number of parts in the parts list.

GetCount  

The GetCount method gets the total number of audio sessions that are open on the audio device.



 

GetCurrentPadding  

The GetCurrentPadding method retrieves the number of frames of padding in the endpoint buffer.

GetCurrentSharedModeEnginePeriod  

Returns the current format and periodicity of the audio engine.

GetDataFlow  

The GetDataFlow method indicates whether the audio endpoint device is a rendering device or a
capture device.

GetDataFlow  

The GetDataFlow method gets the direction of data flow through this connector.

GetDefaultAudioEndpoint  

The GetDefaultAudioEndpoint method retrieves the default audio endpoint for the specified data-
flow direction and role.

GetDevice  

The GetDevice method retrieves an audio endpoint device that is identified by an endpoint ID
string.

GetDeviceId  

The GetDeviceId method gets the device identifier of the device that is represented by the device-
topology object.

GetDeviceIdConnectedTo  

The GetDeviceIdConnectedTo method gets the device identifier of the audio device, if any, that
this connector is connected to.

GetDevicePeriod  

The GetDevicePeriod method retrieves the length of the periodic interval separating successive
processing passes by the audio engine on the data in the endpoint buffer.

GetDevicePosition  

The GetDevicePosition method gets the current device position, in frames, directly from the
hardware.



 

GetDevicePreferredFormat  

The GetDevicePreferredFormat method gets the preferred audio stream format for the
connection.

GetDisplayName  

The GetDisplayName method retrieves the display name for the audio session.

GetEnabled  

The GetEnabled method gets the current state (enabled or disabled) of the AGC.

GetEnabled  

The GetEnabled method gets the current state (enabled or disabled) of the loudness control.

GetEngineFormat  

The GetEngineFormat method retrieves the current data format of the offloaded audio stream.

GetFormat  

Gets the format with the specified index in the list. The formats are listed in order of importance.
The most preferable format is first in the list.

GetFrameCount  

Gets the total frame count of the ISpatialAudioMetadataItems, which defines valid item offsets.

GetFrequency  

The GetFrequency method gets the device frequency.

GetGfxState  

The GetGfxState method retrieves the GFX state of the offloaded audio stream.

GetGlobalId  

The GetGlobalId method gets the global ID of this part.

GetGroupingParam  

The GetGroupingParam method retrieves the grouping parameter of the audio session.

GetIconPath  

The GetIconPath method retrieves the path for the display icon for the audio session.



 

GetId  

The GetId method retrieves an endpoint ID string that identifies the audio endpoint device.

GetIID  

The GetIID method gets the interface ID of the function-specific control interface of the part.

GetInfo  

Gets the total frame count for the ISpatialAudioMetadataItems, which defines valid item offsets.

GetItemCount  

The current number of items stored by the ISpatialAudioMetadataItems.

GetJackCount  

The GetJackCount method gets the number of jacks required to connect to an audio endpoint
device.

GetJackCount  

The GetJackCount method gets the number of jacks on the connector, which are required to
connect to an endpoint device.

GetJackDescription  

The GetJackDescription method gets a description of an audio jack.

GetJackDescription2  

The GetJackDescription2 method gets the description of a specified audio jack.

GetJackSinkInformation  

The GetJackSinkInformation method retrieves the sink information for the specified jack.

GetLevel  

The GetLevel method gets the peak level that the peak meter recorded for the specified channel
since the peak level for that channel was previously read.

GetLevel  

The GetLevel method gets the volume level, in decibels, of the specified channel.



 

GetLevelRange  

The GetLevelRange method gets the range, in decibels, of the volume level of the specified
channel.

GetLocalEffectsState  

The GetLocalEffectsState method retrieves the local effects state that is currently applied to the
offloaded audio stream.

GetLocalId  

The GetLocalId method gets the local ID of this part.

GetMasterVolume  

The GetMasterVolume method retrieves the client volume level for the audio session.

GetMasterVolumeLevel  

The GetMasterVolumeLevel method gets the master volume level, in decibels, of the audio stream
that enters or leaves the audio endpoint device.

GetMasterVolumeLevelScalar  

The GetMasterVolumeLevelScalar method gets the master volume level of the audio stream that
enters or leaves the audio endpoint device. The volume level is expressed as a normalized, audio-
tapered value in the range from 0.0 to 1.0.

GetMaxDynamicObjectCount  

Gets the maximum number of dynamic audio objects for the spatial audio client.

GetMaxFrameCount  

Gets the maximum possible frame count per processing pass. This method can be used to
determine the size of the source buffer that should be allocated to convey audio data for each
processing pass.

GetMaxFrameCountForCategory  

Gets the maximum supported frame count per processing pass.

GetMaxItemCount  

The maximum number of items allowed by the ISpatialAudioMetadataItems, defined when the
object is created.



 

GetMaxValueBufferLength  

The size of the largest command value defined by the metadata format for the
ISpatialAudioMetadataItems.

GetMeterChannelCount  

Gets the number of available audio channels in the offloaded stream that can be metered.

GetMeteringChannelCount  

The GetMeteringChannelCount method gets the number of channels in the audio stream that are
monitored by peak meters.

GetMeteringData  

The GetMeteringData method retrieves general information about the available audio channels in
the offloaded stream.

GetMixFormat  

The GetMixFormat method retrieves the stream format that the audio engine uses for its internal
processing of shared-mode streams.

GetMute  

The GetMute method retrieves the mute status of the offloaded audio stream.

GetMute  

The GetMute method gets the current state (enabled or disabled) of the mute control.

GetMute  

The GetMute method retrieves the current muting state for the audio session.

GetMute  

The GetMute method gets the muting state of the audio stream that enters or leaves the audio
endpoint device.

GetName  

The GetName method gets the friendly name for the audio function that the control interface
encapsulates.

GetName  

The GetName method gets the friendly name of this part.



 

GetNativeStaticObjectTypeMask  

Gets a channel mask which represents the subset of static speaker bed channels native to current
rendering engine.

GetNextPacketSize  

The GetNextPacketSize method retrieves the number of frames in the next data packet in the
capture endpoint buffer.

GetPart  

The GetPart method gets a part from the parts list.

GetPartById  

The GetPartById method gets a part that is identified by its local ID.

GetPartType  

The GetPartType method gets the part type of this part.

GetPeakValue  

The GetPeakValue method gets the peak sample value for the channels in the audio stream.

GetPosition  

The GetPosition method gets the current device position.

GetProcessId  

The GetProcessId method retrieves the process identifier of the audio session.

GetSelection  

The GetSelection method gets the local ID of the part that is connected to the selector input that
is currently selected.

GetSelection  

The GetSelection method gets the local ID of the part that is connected to the selector output that
is currently selected.

GetService 

Gets additional services from the ISpatialAudioObjectRenderStream.



 

GetService 

The GetService method accesses additional services from the audio client object.

GetSession  

The GetSession method gets the audio session specified by an audio session number.

GetSessionEnumerator  

The GetSessionEnumerator method gets a pointer to the audio session enumerator object.

GetSessionIdentifier  

The GetSessionIdentifier method retrieves the audio session identifier.

GetSessionInstanceIdentifier  

The GetSessionInstanceIdentifier method retrieves the identifier of the audio session instance.

GetSharedModeEnginePeriod  

Returns the range of periodicities supported by the engine for the specified stream format.

GetSignalPath  

The GetSignalPath method gets a list of parts in the signal path that links two parts, if the path
exists.

GetSimpleAudioVolume  

The GetSimpleAudioVolume method retrieves a simple audio volume control.

GetSoundLevel  

Gets the current sound level for the audio streams associated with an IAudioStateMonitor.

GetSpatialAudioMetadataItems  

Gets a pointer to the ISpatialAudioMetadataItems object which stores metadata items for the
ISpatialAudioObjectForMetadataItems.

GetSpatialAudioMetadataItemsBufferLength  

Gets the length of the buffer required to store the specified number of spatial audio metadata
items.



 

GetState  

The GetState method retrieves the current device state.

GetState  

The GetState method retrieves the current state of the audio session.

GetStaticObjectPosition  

Gets the position in 3D space of the specified static spatial audio channel.

GetStreamLatency  

The GetStreamLatency method retrieves the maximum latency for the current stream and can be
called any time after the stream has been initialized.

GetSubType  

The GetSubType method gets the part subtype of this part.

GetSubunit  

The GetSubunit method gets the subunit that is specified by a subunit number.

GetSubunitCount  

The GetSubunitCount method gets the number of subunits in the device topology.

GetSupportedAudioObjectFormatEnumerator  

Gets an IAudioFormatEnumerator that contains all supported audio formats for spatial audio
objects, the first item in the list represents the most preferable format.

GetTopologyObject  

The GetTopologyObject method gets a reference to the IDeviceTopology interface of the device-
topology object that contains this part.

GetType  

The GetType method gets the type of this connector.

GetType  

The GetType method gets the data type of the device-specific property value.



 

GetValue  

The GetValue method gets the current value of the device-specific property.

GetVolumeChannelCount  

The GetVolumeChannelCount method retrieves the number of available audio channels in the
offloaded stream.

GetVolumeRange  

The GetVolumeRange method gets the volume range, in decibels, of the audio stream that enters
or leaves the audio endpoint device.

GetVolumeRangeChannel  

The GetVolumeRangeChannel method gets the volume range for a specified channel.

GetVolumeStepInfo  

The GetVolumeStepInfo method gets information about the current step in the volume range.

Initialize  

The Initialize method initializes the audio stream.

InitializeSharedAudioStream  

Initializes a shared stream with the specified periodicity.

IsActive  

Gets a boolean value indicating whether the ISpatialAudioObject is valid.

IsAudioObjectFormatSupported  

Gets a value indicating whether ISpatialAudioObjectRenderStream supports a the specified
format.

IsConnected  

The IsConnected method indicates whether this connector is connected to another connector.

IsFormatSupported  

The IsFormatSupported method indicates whether the audio endpoint device supports the
specified audio stream format.



 

IsFormatSupported  

The IsFormatSupported method indicates whether the audio endpoint device supports a
particular stream format.

IsLastBufferControlSupported  

Indicates if last buffer control is supported.

IsOffloadCapable  

Queries whether the audio rendering endpoint that the ISpatialAudioClient2 was created on
supports hardware offloaded audio processing.

IsOffloadCapable  

The IsOffloadCapable method retrieves information about whether or not the endpoint on which
a stream is created is capable of supporting an offloaded audio stream.

IsSpatialAudioStreamAvailable  

When successful, gets a value indicating whether the currently active spatial rendering engine
supports the specified spatial audio render stream.

IsSystemSoundsSession  

The IsSystemSoundsSession method indicates whether the session is a system sounds session.

Item  

The Item method retrieves a pointer to the specified item in the device collection.

OnAudioEffectsChanged  

Called by the system when the list of audio effects changes or the resources needed to enable an
effect changes.

OnAvailableDynamicObjectCountChange  

Notifies the spatial audio client when the rendering capacity for an
ISpatialAudioObjectRenderStream is about to change, specifies the time after which the change
will occur, and specifies the number of dynamic audio objects that will be available after the
change.

OnChannelVolumeChanged  

The OnChannelVolumeChanged method notifies the client that the volume level of an audio
channel in the session submix has changed.



 

OnDefaultDeviceChanged  

The OnDefaultDeviceChanged method notifies the client that the default audio endpoint device
for a particular device role has changed.

OnDeviceAdded  

The OnDeviceAdded method indicates that a new audio endpoint device has been added.

OnDeviceRemoved  

The OnDeviceRemoved method indicates that an audio endpoint device has been removed.

OnDeviceStateChanged  

The OnDeviceStateChanged method indicates that the state of an audio endpoint device has
changed.

OnDisplayNameChanged  

The OnDisplayNameChanged method notifies the client that the display name for the session has
changed.

OnGroupingParamChanged  

The OnGroupingParamChanged method notifies the client that the grouping parameter for the
session has changed.

OnIconPathChanged  

The OnIconPathChanged method notifies the client that the display icon for the session has
changed.

OnNotify  

The OnNotify method notifies the client when the status of a connector or subunit changes.

OnNotify  

The OnNotify method notifies the client that the volume level or muting state of the audio
endpoint device has changed.

OnPropertyValueChanged  

The OnPropertyValueChanged method indicates that the value of a property belonging to an
audio endpoint device has changed.



 

OnSessionCreated  

The OnSessionCreated method notifies the registered processes that the audio session has been
created.

OnSessionDisconnected  

The OnSessionDisconnected method notifies the client that the audio session has been
disconnected.

OnSimpleVolumeChanged  

The OnSimpleVolumeChanged method notifies the client that the volume level or muting state of
the audio session has changed.

OnStateChanged  

The OnStateChanged method notifies the client that the stream-activity state of the session has
changed.

OnVolumeDuckNotification  

The OnVolumeDuckNotification method sends a notification about a pending system ducking
event.

OnVolumeUnduckNotification  

The OnVolumeUnduckNotification method sends a notification about a pending system
unducking event.

Open  

Opens an ISpatialAudioMetadataItems object for copying.

Open  

Opens an ISpatialAudioMetadataItems object for reading.

Open  

Opens an ISpatialAudioMetadataItems object for writing.

OpenPropertyStore  

The OpenPropertyStore method retrieves an interface to the device's property store.



 

QueryHardwareSupport  

The QueryHardwareSupport method queries the audio endpoint device for its hardware-
supported functions. (IAudioEndpointVolume.QueryHardwareSupport)

QueryHardwareSupport  

The QueryHardwareSupport method queries the audio endpoint device for its hardware-
supported functions. (IAudioMeterInformation.QueryHardwareSupport)

ReadNextItem  

Gets the number of commands and the sample offset for the metadata item being read.

ReadNextItemCommand  

Reads metadata commands and value data for the current item.

RegisterAudioEffectsChangedNotificationCallback  

Registers an AudioEffectsChangedNotificationClient interface.

RegisterAudioSessionNotification 

The RegisterAudioSessionNotification method registers the client to receive notifications of
session events, including changes in the stream state.

RegisterCallback  

Registers an implementation of AudioStateMonitorCallback that is called when the system
changes the sound level of the audio streams being monitored by an IAudioStateMonitor.

RegisterControlChangeCallback  

The RegisterControlChangeCallback method registers the IControlChangeNotify interface, which
the client implements to receive notifications of status changes in this part.

RegisterControlChangeNotify  

The RegisterControlChangeNotify method registers a client's notification callback interface.

RegisterDuckNotification  

The RegisterDuckNotification method registers the application with the session manager to
receive ducking notifications.



 

RegisterEndpointNotificationCallback  

The RegisterEndpointNotificationCallback method registers a client's notification callback
interface.

RegisterSessionNotification  

The RegisterSessionNotification method registers the application to receive a notification when a
session is created.

ReleaseBuffer  

The ReleaseBuffer method releases the buffer.

ReleaseBuffer  

The ReleaseBuffer method releases the buffer space acquired in the previous call to the
IAudioRenderClient::GetBuffer method.

ReleaseOutputDataPointerForLastBuffer  

Releases the output data pointer for the last buffer.

Reset  

Reset a stopped audio stream.

Reset  

The Reset method resets the audio stream.

ResetToDefault  

Resets the format to the default setting provided by the device manufacturer.

SetAllVolumes  

The SetAllVolumes method sets the individual volume levels for all the channels in the audio
stream.

SetAllVolumes  

The SetAllVolumes method sets the individual volume levels for all the channels in the audio
session.

SetAudioStreamWindow  

Associates the specified HWND window handle with an audio stream.



 

SetChannelConfig  

The SetChannelConfig method sets the channel-configuration mask in a channel-configuration
control.

SetChannelVolume  

The SetChannelVolume method sets the volume level for the specified channel in the audio
stream.

SetChannelVolume  

The SetChannelVolume method sets the volume level for the specified channel in the audio
session.

SetChannelVolumeLevel  

The SetChannelVolumeLevel method sets the volume level, in decibels, of the specified channel of
the audio stream that enters or leaves the audio endpoint device.

SetChannelVolumeLevelScalar  

The SetChannelVolumeLevelScalar method sets the normalized, audio-tapered volume level of the
specified channel in the audio stream that enters or leaves the audio endpoint device.

SetChannelVolumes  

The SetChannelVolumes method sets the volume levels for the various audio channels in the
offloaded stream.

SetClientProperties  

Sets the properties of the audio stream by populating an AudioClientProperties structure.

SetDirectivity  

Sets the spatial audio directivity model for the ISpatialAudioObjectForHrtf.

SetDisplayName  

The SetDisplayName method assigns a display name to the current session.

SetDistanceDecay  

Sets the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.



 

SetDuckingOptionsForCurrentStream  

Sets the audio ducking options for an audio render stream.

SetDuckingPreference  

The SetDuckingPreference method enables or disables the default stream attenuation experience
(auto-ducking) provided by the system.

SetEchoCancellationRenderEndpoint  

Sets the audio render endpoint that should be used as the reference stream for acoustic echo
cancellation (AEC).

SetEnabled  

The SetEnabled method enables or disables the AGC.

SetEnabled  

The SetEnabled method enables or disables the loudness control.

SetEndOfStream  

Instructs the system that the final block of audio data has been submitted for the
ISpatialAudioObject so that the object can be deactivated and its resources reused.

SetEngineDeviceFormat  

The SetEngineDeviceFormat method sets the waveform audio format for the hardware audio
engine.

SetEnvironment  

Sets the type of acoustic environment that is simulated when audio is processed for the
ISpatialAudioObjectForHrtf.

SetEventHandle  

The SetEventHandle method sets the event handle that the system signals when an audio buffer is
ready to be processed by the client.

SetGain  

Sets the gain for the ISpatialAudioObjectForHrtf.

SetGfxState  

The SetGfxState method sets the GFX state of the offloaded audio stream.



 

SetGroupingParam  

The SetGroupingParam method assigns a session to a grouping of sessions.

SetIconPath  

The SetIconPath method assigns a display icon to the current session.

SetLevel  

The SetLevel method sets the volume level, in decibels, of the specified channel.

SetLevelAllChannels  

The SetLevelAllChannels method sets the volume levels, in decibels, of all the channels in the
audio stream.

SetLevelUniform  

The SetLevelUniform method sets all channels in the audio stream to the same uniform volume
level, in decibels.

SetLocalEffectsState  

The SetLocalEffectsState method sets the local effects state that is to be applied to the offloaded
audio stream.

SetMasterVolume  

The SetMasterVolume method sets the master volume level for the audio session.

SetMasterVolumeLevel  

The SetMasterVolumeLevel method sets the master volume level, in decibels, of the audio stream
that enters or leaves the audio endpoint device.

SetMasterVolumeLevelScalar  

The SetMasterVolumeLevelScalar method sets the master volume level of the audio stream that
enters or leaves the audio endpoint device. The volume level is expressed as a normalized, audio-
tapered value in the range from 0.0 to 1.0.

SetMute  

The SetMute method sets the mute status of the offloaded audio stream.

SetMute  

The SetMute method enables or disables the mute control.



 

SetMute  

The SetMute method sets the muting state for the audio session.

SetMute  

The SetMute method sets the muting state of the audio stream that enters or leaves the audio
endpoint device.

SetOrientation  

Sets the orientation in 3D space, relative to the listener's frame of reference, from which the
ISpatialAudioObjectForHrtf audio data will be rendered.

SetPosition  

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObjectForHrtf
audio data will be rendered.

SetPosition  

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObject audio
data will be rendered.

SetSampleRate  

The SetSampleRate method sets the sample rate of a stream.

SetSelection  

The SetSelection method selects one of the inputs of the input selector.

SetSelection  

The SetSelection method selects one of the outputs of the output selector.

SetValue  

The SetValue method sets the value of the device-specific property.

SetVolume  

Sets an audio amplitude multiplier that will be applied to the audio data provided by the
ISpatialAudioObject before it is submitted to the audio rendering engine.

Start  

Starts the spatial audio stream.



 

Start  

The Start method starts the audio stream.

Stop  

Stops a running audio stream.

Stop  

The Stop method stops the audio stream.

UnregisterAudioEffectsChangedNotificationCallback  

Unregisters an IAudioEffectsChangedNotificationClient interface.

UnregisterAudioSessionNotification  

The UnregisterAudioSessionNotification method deletes a previous registration by the client to
receive notifications.

UnregisterCallback  

Unregisters an AudioStateMonitorCallback previously registered with a call to
IAudioStateMonitor::RegisterCallback.

UnregisterControlChangeCallback  

The UnregisterControlChangeCallback method removes the registration of an
IControlChangeNotify interface that the client previously registered by a call to the
IPart::RegisterControlChangeCallback method.

UnregisterControlChangeNotify  

The UnregisterControlChangeNotify method deletes the registration of a client's notification
callback interface that the client registered in a previous call to the
IAudioEndpointVolume::RegisterControlChangeNotify method.

UnregisterDuckNotification  

The UnregisterDuckNotification method deletes a previous registration by the application to
receive notifications.

UnregisterEndpointNotificationCallback  

The UnregisterEndpointNotificationCallback method deletes the registration of a notification
interface that the client registered in a previous call to the
IMMDeviceEnumerator::RegisterEndpointNotificationCallback method.



 

UnregisterSessionNotification  

The UnregisterSessionNotification method deletes the registration to receive a notification when a
session is created.

VolumeStepDown  

The VolumeStepDown method decrements, by one step, the volume level of the audio stream that
enters or leaves the audio endpoint device.

VolumeStepUp  

The VolumeStepUp method increments, by one step, the volume level of the audio stream that
enters or leaves the audio endpoint device.

WriteNextItem  

Starts a new metadata item at the specified offset.

WriteNextItemCommand  

Writes metadata commands and value data to the current item.

WriteNextMetadataCommand  

Writes a metadata command to the spatial audio object, each command may only be added once
per object per processing cycle.

 

IAcousticEchoCancellationControl  

Provides a mechanism for determining if an audio capture endpoint supports acoustic echo
cancellation (AEC) and, if so, allows the client to set the audio render endpoint that should be
used as the reference stream.

IActivateAudioInterfaceAsyncOperation  

Represents an asynchronous operation activating a WASAPI interface and provides a method to
retrieve the results of the activation.

IActivateAudioInterfaceCompletionHandler  

Provides a callback to indicate that activation of a WASAPI interface is complete.

Interfaces



 

IAudioAutoGainControl  

The IAudioAutoGainControl interface provides access to a hardware automatic gain control (AGC).

IAudioBass  

The IAudioBass interface provides access to a hardware bass-level control.

IAudioCaptureClient  

The IAudioCaptureClient interface enables a client to read input data from a capture endpoint
buffer.

IAudioChannelConfig  

The IAudioChannelConfig interface provides access to a hardware channel-configuration control.

IAudioClient  

The IAudioClient interface enables a client to create and initialize an audio stream between an
audio application and the audio engine (for a shared-mode stream) or the hardware buffer of an
audio endpoint device (for an exclusive-mode stream).

IAudioClient2  

The IAudioClient2 interface is derived from the IAudioClient interface, with a set of additional
methods that enable a Windows Audio Session API (WASAPI) audio client to do the following:_opt
in for offloading, query stream properties, and get information from the hardware that handles
offloading.The audio client can be successful in creating an offloaded stream if the underlying
endpoint supports the hardware audio engine, the endpoint has been enumerated and
discovered by the audio system, and there are still offload pin instances available on the endpoint.

IAudioClient3  

The IAudioClient3 interface is derived from the IAudioClient2 interface, with a set of additional
methods that enable a Windows Audio Session API (WASAPI) audio client to query for the audio
engine's supported periodicities and current periodicity as well as request initialization of a shared
audio stream with a specified periodicity.

IAudioClientDuckingControl  

Provides a method, SetDuckingOptionsForCurrentStream, that allows an app to specify that the
system shouldn't duck the audio of other streams when the app's audio render stream is active.

IAudioClock  

The IAudioClock interface enables a client to monitor a stream's data rate and the current position
in the stream.



 

IAudioClock2  

The IAudioClock2 interface is used to get the current device position.

IAudioClockAdjustment  

The IAudioClockAdjustment interface is used to adjust the sample rate of a stream.

IAudioEffectsChangedNotificationClient  

A callback interface allows applications to receive notifications when the list of audio effects
changes or the resources needed to enable an effect changes.

IAudioEffectsManager  

Provides management functionality for the audio effects pipeline

IAudioEndpointFormatControl  

Used for resetting the current audio endpoint device format.

IAudioEndpointLastBufferControl  

Provides functionality to allow an offload stream client to notify the endpoint that the last buffer
has been sent only partially filled.

IAudioEndpointOffloadStreamMeter  

The IAudioEndpointOffloadStreamMeter interface retrieves general information about the audio
channels in the offloaded audio stream.

IAudioEndpointOffloadStreamMute  

The IAudioEndpointOffloadStreamMute interface allows a client to manipulate the mute status of
the offloaded audio stream.

IAudioEndpointOffloadStreamVolume  

The IAudioEndpointOffloadStreamVolume interface allows the client application to manipulate the
volume level of the offloaded audio stream.

IAudioEndpointVolume  

The IAudioEndpointVolume interface represents the volume controls on the audio stream to or
from an audio endpoint device.



 

IAudioEndpointVolumeCallback  

The IAudioEndpointVolumeCallback interface provides notifications of changes in the volume
level and muting state of an audio endpoint device.

IAudioEndpointVolumeEx  

The IAudioEndpointVolumeEx interface provides volume controls on the audio stream to or from
a device endpoint.

IAudioFormatEnumerator  

Provides a list of supported audio formats. The most preferred format is first in the list. Get a
reference to this interface by calling
ISpatialAudioClient::GetSupportedAudioObjectFormatEnumerator.

IAudioInputSelector  

The IAudioInputSelector interface provides access to a hardware multiplexer control (input
selector).

IAudioLfxControl  

The IAudioLfxControl interface allows the client to apply or remove local effects from the
offloaded audio stream.

IAudioLoudness  

The IAudioLoudness interface provides access to a "loudness" compensation control.

IAudioMeterInformation  

The IAudioMeterInformation interface represents a peak meter on an audio stream to or from an
audio endpoint device.

IAudioMidrange  

The IAudioMidrange interface provides access to a hardware midrange-level control.

IAudioMute  

The IAudioMute interface provides access to a hardware mute control.

IAudioOutputSelector  

The IAudioOutputSelector interface provides access to a hardware demultiplexer control (output
selector).



 

IAudioPeakMeter  

The IAudioPeakMeter interface provides access to a hardware peak-meter control.

IAudioRenderClient  

The IAudioRenderClient interface enables a client to write output data to a rendering endpoint
buffer.

IAudioSessionControl  

The IAudioSessionControl interface enables a client to configure the control parameters for an
audio session and to monitor events in the session.

IAudioSessionControl2  

The IAudioSessionControl2 interface can be used by a client to get information about the audio
session.

IAudioSessionEnumerator  

The IAudioSessionEnumerator interface enumerates audio sessions on an audio device.

IAudioSessionEvents  

The IAudioSessionEvents interface provides notifications of session-related events such as
changes in the volume level, display name, and session state.

IAudioSessionManager  

The IAudioSessionManager interface enables a client to access the session controls and volume
controls for both cross-process and process-specific audio sessions.

IAudioSessionManager2  

The IAudioSessionManager2 interface enables an application to manage submixes for the audio
device.

IAudioSessionNotification  

The IAudioSessionNotification interface provides notification when an audio session is created.

IAudioStateMonitor  

Provides APIs for querying the sound level of audio streams and for receiving notifications when
the sound level changes.



 

IAudioStreamVolume  

The IAudioStreamVolume interface enables a client to control and monitor the volume levels for
all of the channels in an audio stream.

IAudioTreble  

The IAudioTreble interface provides access to a hardware treble-level control.

IAudioViewManagerService  

Provides APIs for associating an HWND with an audio stream.

IAudioVolumeDuckNotification  

The IAudioVolumeDuckNotification interface is used to by the system to send notifications about
stream attenuation changes.Stream Attenuation, or ducking, is a feature introduced in Windows 7,
where the system adjusts the volume of a non-communication stream when a new
communication stream is opened. For more information about this feature, see Default Ducking
Experience.

IAudioVolumeLevel  

The IAudioVolumeLevel interface provides access to a hardware volume control.

IChannelAudioVolume  

The IChannelAudioVolume interface enables a client to control and monitor the volume levels for
all of the channels in the audio session that the stream belongs to.

IConnector  

The IConnector interface represents a point of connection between components.

IControlChangeNotify  

The IControlChangeNotify interface provides notifications when the status of a part (connector or
subunit) changes.

IControlInterface  

The IControlInterface interface represents a control interface on a part (connector or subunit) in a
device topology. The client obtains a reference to a part's IControlInterface interface by calling the
IPart::GetControlInterface method.

IDeviceSpecificProperty  

The IDeviceSpecificProperty interface provides access to the control value of a device-specific
hardware control.



 

IDeviceTopology  

The IDeviceTopology interface provides access to the topology of an audio device.

IHardwareAudioEngineBase  

The IHardwareAudioEngineBase interface is implemented by audio endpoints for the audio stack
to use to configure and retrieve information about the hardware audio engine.

IKsFormatSupport  

The IKsFormatSupport interface provides information about the audio data formats that are
supported by a software-configured I/O connection (typically a DMA channel) between an audio
adapter device and system memory.

IKsJackDescription  

The IKsJackDescription interface provides information about the jacks or internal connectors that
provide a physical connection between a device on an audio adapter and an external or internal
endpoint device (for example, a microphone or CD player).

IKsJackDescription2 

The IKsJackDescription2 interface provides information about the jacks or internal connectors that
provide a physical connection between a device on an audio adapter and an external or internal
endpoint device (for example, a microphone or CD player).

IKsJackSinkInformation  

The IKsJackSinkInformation interface provides access to jack sink information if the jack is
supported by the hardware.

IMMDevice  

The IMMDevice interface encapsulates the generic features of a multimedia device resource.

IMMDeviceCollection  

The IMMDeviceCollection interface represents a collection of multimedia device resources.

IMMDeviceEnumerator  

The IMMDeviceEnumerator interface provides methods for enumerating multimedia device
resources.

IMMEndpoint  

The IMMEndpoint interface represents an audio endpoint device.



 

IMMNotificationClient  

The IMMNotificationClient interface provides notifications when an audio endpoint device is
added or removed, when the state or properties of an endpoint device change, or when there is a
change in the default role assigned to an endpoint device.

IPart  

The IPart interface represents a part (connector or subunit) of a device topology.

IPartsList  

The IPartsList interface represents a list of parts, each of which is an object with an IPart interface
that represents a connector or subunit.

IPerChannelDbLevel  

The IPerChannelDbLevel interface represents a generic subunit control interface that provides per-
channel control over the volume level, in decibels, of an audio stream or of a frequency band in an
audio stream.

ISimpleAudioVolume  

The ISimpleAudioVolume interface enables a client to control the master volume level of an audio
session.

ISpatialAudioClient  

The ISpatialAudioClient interface enables a client to create audio streams that emit audio from a
position in 3D space.

ISpatialAudioClient2  

The ISpatialAudioClient2 interface inherits from ISpatialAudioClient and adds methods to query
for support for offloading large audio buffers.

ISpatialAudioMetadataClient  

Provides a class factory for creating ISpatialAudioMetadataItems, ISpatialAudioMetadataWriter,
ISpatialAudioMetadataReader, and ISpatialAudioMetadataCopier objects.

ISpatialAudioMetadataCopier  

Provides methods for copying all or subsets of metadata items from a source
SpatialAudioMetadataItems into a destination SpatialAudioMetadataItems.

ISpatialAudioMetadataItems  

Represents a buffer of spatial audio metadata items.



 

ISpatialAudioMetadataItemsBuffer  

Provides methods for attaching buffers to SpatialAudioMetadataItems for in-place storage of
data.

ISpatialAudioMetadataReader  

Provides methods for extracting spatial audio metadata items and item command value pairs
from an ISpatialAudioMetadataItems object.

ISpatialAudioMetadataWriter  

Provides methods for storing spatial audio metadata items positioned within a range of
corresponding audio frames.

ISpatialAudioObject  

Represents an object that provides audio data to be rendered from a position in 3D space, relative
to the user.

ISpatialAudioObjectBase  

Base interface that represents an object that provides audio data to be rendered from a position
in 3D space, relative to the user.

ISpatialAudioObjectForHrtf  

Represents an object that provides audio data to be rendered from a position in 3D space, relative
to the user, a head-relative transfer function (HRTF).

ISpatialAudioObjectForMetadataCommands  

Used to write metadata commands for spatial audio.

ISpatialAudioObjectForMetadataItems  

Used to write spatial audio metadata for applications that require multiple metadata items per
buffer with frame-accurate placement.

ISpatialAudioObjectRenderStream  

Provides methods for controlling a spatial audio object render stream, including starting,
stopping, and resetting the stream.

ISpatialAudioObjectRenderStreamBase  

Base interface that provides methods for controlling a spatial audio object render stream,
including starting, stopping, and resetting the stream.



 

ISpatialAudioObjectRenderStreamForHrtf  

Provides methods for controlling an Hrtf spatial audio object render stream, including starting,
stopping, and resetting the stream.

ISpatialAudioObjectRenderStreamForMetadata  

Provides methods for controlling a spatial audio object render stream for metadata, including
starting, stopping, and resetting the stream.

ISpatialAudioObjectRenderStreamNotify  

Provides notifications for spatial audio clients to respond to changes in the state of an
ISpatialAudioObjectRenderStream.

ISubunit  

The ISubunit interface represents a hardware subunit (for example, a volume control) that lies in
the data path between a client and an audio endpoint device.

 

AUDIO_EFFECT  

Represents an audio effect.

AUDIO_VOLUME_NOTIFICATION_DATA  

The AUDIO_VOLUME_NOTIFICATION_DATA structure describes a change in the volume level or
muting state of an audio endpoint device.

AUDIOCLIENT_ACTIVATION_PARAMS  

Specifies the activation parameters for a call to ActivateAudioInterfaceAsync.

AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS  

Specifies parameters for a call to ActivateAudioInterfaceAsync where loopback activation is
requested.

AudioExtensionParams  

This structure is passed to the Control Panel Endpoint Extension property page through
IShellPropSheetExt::AddPages and is used to create endpoint PropertyPages.

Structures



 

DIRECTX_AUDIO_ACTIVATION_PARAMS  

The DIRECTX_AUDIO_ACTIVATION_PARAMS structure specifies the initialization parameters for a
DirectSound stream.

KSJACK_DESCRIPTION  

The KSJACK_DESCRIPTION structure describes an audio jack.

KSJACK_DESCRIPTION2  

The KSJACK_DESCRIPTION2 structure describes an audio jack.To get the description of an audio
jack of a connector, call IKsJackDescription2::GetJackDescription2.

KSJACK_SINK_INFORMATION  

The KSJACK_SINK_INFORMATION structure stores information about an audio jack sink.

LUID  

The LUID structure stores the video port identifier. This structure is stored in the PortId member of
the KSJACK_SINK_INFORMATION structure.

SpatialAudioClientActivationParams  

Represents optional activation parameters for a spatial audio render stream. Pass this structure to
ActivateAudioInterfaceAsync when activating an ISpatialAudioClient interface.

SpatialAudioHrtfActivationParams  

Specifies the activation parameters for an ISpatialAudioRenderStreamForHrtf.

SpatialAudioHrtfActivationParams2  

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioHrtfActivationParams with the ability to specify stream options.

SpatialAudioHrtfDirectivity  

Represents an omnidirectional model for an ISpatialAudioObjectForHrtf. The omnidirectional
emission is interpolated linearly with the directivity model specified in the Type field based on the
value of the Scaling field.

SpatialAudioHrtfDirectivityCardioid  

Represents a cardioid-shaped directivity model for an ISpatialAudioObjectForHrtf.



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

SpatialAudioHrtfDirectivityCone  

Represents a cone-shaped directivity model for an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDirectivityUnion  

Defines a spatial audio directivity model for an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDistanceDecay  

Represents the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

SpatialAudioMetadataItemsInfo  

Provides information about an ISpatialAudioMetadataItems object. Get a copy of this structure by
calling GetInfo.

SpatialAudioObjectRenderStreamActivationParams  

Represents activation parameters for a spatial audio render stream. Pass this structure to
ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

SpatialAudioObjectRenderStreamActivationParams2  

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioObjectRenderStreamActivationParams with the ability to specify stream options.

SpatialAudioObjectRenderStreamForMetadataActivationParams  

Represents activation parameters for a spatial audio render stream for metadata. Pass this
structure to ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

SpatialAudioObjectRenderStreamForMetadataActivationParams2  

Represents activation parameters for a spatial audio render stream for metadata, extending
SpatialAudioObjectRenderStreamForMetadataActivationParams with the ability to specify stream
options.

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


audioclient.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

audioclient.h contains the following programming interfaces:

 

IAcousticEchoCancellationControl  

Provides a mechanism for determining if an audio capture endpoint supports acoustic echo
cancellation (AEC) and, if so, allows the client to set the audio render endpoint that should be
used as the reference stream.

IAudioCaptureClient  

The IAudioCaptureClient interface enables a client to read input data from a capture endpoint
buffer.

IAudioClient  

The IAudioClient interface enables a client to create and initialize an audio stream between an
audio application and the audio engine (for a shared-mode stream) or the hardware buffer of an
audio endpoint device (for an exclusive-mode stream).

IAudioClient2  

The IAudioClient2 interface is derived from the IAudioClient interface, with a set of additional
methods that enable a Windows Audio Session API (WASAPI) audio client to do the following:_opt
in for offloading, query stream properties, and get information from the hardware that handles
offloading.The audio client can be successful in creating an offloaded stream if the underlying
endpoint supports the hardware audio engine, the endpoint has been enumerated and
discovered by the audio system, and there are still offload pin instances available on the endpoint.

IAudioClient3  

The IAudioClient3 interface is derived from the IAudioClient2 interface, with a set of additional
methods that enable a Windows Audio Session API (WASAPI) audio client to query for the audio
engine's supported periodicities and current periodicity as well as request initialization of a shared
audio stream with a specified periodicity.

Interfaces



 

IAudioClientDuckingControl  

Provides a method, SetDuckingOptionsForCurrentStream, that allows an app to specify that the
system shouldn't duck the audio of other streams when the app's audio render stream is active.

IAudioClock  

The IAudioClock interface enables a client to monitor a stream's data rate and the current position
in the stream.

IAudioClock2  

The IAudioClock2 interface is used to get the current device position.

IAudioClockAdjustment  

The IAudioClockAdjustment interface is used to adjust the sample rate of a stream.

IAudioEffectsChangedNotificationClient  

A callback interface allows applications to receive notifications when the list of audio effects
changes or the resources needed to enable an effect changes.

IAudioEffectsManager  

Provides management functionality for the audio effects pipeline

IAudioRenderClient  

The IAudioRenderClient interface enables a client to write output data to a rendering endpoint
buffer.

IAudioStreamVolume  

The IAudioStreamVolume interface enables a client to control and monitor the volume levels for
all of the channels in an audio stream.

IAudioViewManagerService  

Provides APIs for associating an HWND with an audio stream.

IChannelAudioVolume  

The IChannelAudioVolume interface enables a client to control and monitor the volume levels for
all of the channels in the audio session that the stream belongs to.



Feedback

 

ISimpleAudioVolume  

The ISimpleAudioVolume interface enables a client to control the master volume level of an audio
session.

 

AUDIO_EFFECT  

Represents an audio effect.

AudioClientProperties  

The AudioClientProperties structure (audioclient.h) is used to set the parameters that describe the
properties of the client's audio stream.

 

_AUDCLNT_BUFFERFLAGS  

The _AUDCLNT_BUFFERFLAGS enumeration defines flags that indicate the status of an audio
endpoint buffer.

AUDCLNT_STREAMOPTIONS  

Defines values that describe the characteristics of an audio stream.

AUDIO_DUCKING_OPTIONS  

Specifies audio ducking options. Use values from this enumeration when calling
IAudioClientDuckingControl::SetDuckingOptionsForCurrentStream

AUDIO_EFFECT_STATE  

Specifies the state of an audio effect.

Structures

Enumerations

https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties-r1


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


_AUDCLNT_BUFFERFLAGS enumeration
(audioclient.h)
Article06/24/2021

The _AUDCLNT_BUFFERFLAGS enumeration defines flags that indicate the status of an
audio endpoint buffer.

C++

 

AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY  
The data in the packet is not correlated with the previous packet's device position; this is possibly
due to a stream state transition or timing glitch.

AUDCLNT_BUFFERFLAGS_SILENT  
Treat all of the data in the packet as silence and ignore the actual data values. For more
information about the use of this flag, see Rendering a Stream and Capturing a Stream.

AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR  
The time at which the device's stream position was recorded is uncertain. Thus, the client might be
unable to accurately set the time stamp for the current data packet.

The IAudioCaptureClient::GetBuffer and IAudioRenderClient::ReleaseBuffer methods use
the constants defined in the _AUDCLNT_BUFFERFLAGS enumeration.

Syntax

typedef enum _AUDCLNT_BUFFERFLAGS { 
  AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY, 
  AUDCLNT_BUFFERFLAGS_SILENT, 
  AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR 
} ; 

Constants

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Header audioclient.h

Core Audio Enumerations

IAudioCaptureClient::GetBuffer

IAudioRenderClient::ReleaseBuffer

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer


AUDCLNT_STREAMOPTIONS
enumeration (audioclient.h)
Article07/25/2023

Defines values that describe the characteristics of an audio stream.

C++

 

AUDCLNT_STREAMOPTIONS_NONE

No stream options.

AUDCLNT_STREAMOPTIONS_RAW

The audio stream is a 'raw' stream that bypasses
all signal processing except for endpoint specific,
always-on processing in the Audio Processing Object (APO), driver, and hardware.

AUDCLNT_STREAMOPTIONS_MATCH_FORMAT

The audio client is requesting that the audio engine match the format proposed by the client. The
audio engine
will match this format only if the format is supported by the audio driver and associated APOs.

Supported in Windows 10 and later.

AUDCLNT_STREAMOPTIONS_AMBISONICS

Syntax

typedef enum AUDCLNT_STREAMOPTIONS {
  AUDCLNT_STREAMOPTIONS_NONE,
  AUDCLNT_STREAMOPTIONS_RAW,
  AUDCLNT_STREAMOPTIONS_MATCH_FORMAT,
  AUDCLNT_STREAMOPTIONS_AMBISONICS
} ;

Constants

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 8.1 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 R2 [desktop apps | UWP apps]

Header audioclient.h

Core Audio Enumerations

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations


Feedback

Was this page helpful?

AUDIO_DUCKING_OPTIONS
enumeration (audioclient.h)
Article06/24/2021

Specifies audio ducking options. Use values from this enumeration when calling
IAudioClientDuckingControl::SetDuckingOptionsForCurrentStream

C++

 

AUDIO_DUCKING_OPTIONS_DEFAULT  
The associated audio stream should use the default audio ducking behavior.

AUDIO_DUCKING_OPTIONS_DO_NOT_DUCK_OTHER_STREAMS  
The associated audio stream should not cause other streams to be ducked.

   

Minimum supported client Windows 10 Build 20348

Header audioclient.h

Syntax

typedef enum AUDIO_DUCKING_OPTIONS { 
  AUDIO_DUCKING_OPTIONS_DEFAULT, 
  AUDIO_DUCKING_OPTIONS_DO_NOT_DUCK_OTHER_STREAMS 
} ; 

Constants

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


AUDIO_EFFECT structure (audioclient.h)
Article10/07/2021

Represents an audio effect.

C++

id

The GUID identifier for an audio effect. Audio effect GUIDs are defined in ksmedia.h.

canSetState

A boolean value specifying whether the effect state can be modified.

state

A member of the AUDIO_EFFECT_STATE enumeration specifying the state of the audio
effect.

Get a list of AUDIO_EFFECT structures by calling IAudioEffectsManager::GetAudioEffects.

   

Minimum supported client Windows Build 22000

Header audioclient.h

Syntax

typedef struct AUDIO_EFFECT { 
  GUID               id; 
  BOOL               canSetState;
  AUDIO_EFFECT_STATE state; 
} AUDIO_EFFECT; 

Members

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/ksmedia-h


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEffectsManager::GetAudioEffects

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDIO_EFFECT_STATE enumeration
(audioclient.h)
Article10/07/2021

Specifies the state of an audio effect.

C++

 

AUDIO_EFFECT_STATE_OFF  
The audio effect is off.

AUDIO_EFFECT_STATE_ON  
The audio effect is on.

Get the state of an audio effect by calling IAudioEffectsManager::GetAudioEffects and
checking the state field of the returned AUDIO_EFFECT structures.

Set the state of an audio effect by calling IAudioEffectsManager::SetAudioEffectState.

   

Minimum supported client Windows Build 22000

Header audioclient.h

Syntax

typedef enum AUDIO_EFFECT_STATE { 
  AUDIO_EFFECT_STATE_OFF, 
  AUDIO_EFFECT_STATE_ON 
} ; 

Constants

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/audioclient/nf-audioclient-iaudioeffectsmanager-setaudioeffectstate


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEffectsManager::GetAudioEffects

IAudioEffectsManager::SetAudioEffectState

AUDIO_EFFECT

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/nf-audioclient-iaudioeffectsmanager-setaudioeffectstate


IAcousticEchoCancellationControl
interface (audioclient.h)
Article03/21/2023

Provides a mechanism for determining if an audio capture endpoint supports acoustic
echo cancellation (AEC) and, if so, allows the client to set the audio render endpoint that
should be used as the reference stream.

The IAcousticEchoCancellationControl interface inherits from the IUnknown interface.

The IAcousticEchoCancellationControl interface has these methods.

 

IAcousticEchoCancellationControl::SetEchoCancellationRenderEndpoint  

Sets the audio render endpoint that should be used as the reference stream for acoustic echo
cancellation (AEC).

The following example illustrates the usage of IAcousticEchoCancellationControl
interface. Call IAudioClient::GetService, passing in the IID for the
IAcousticEchoCancellationControl interface. If it succeeds, the capture endpoint
supports control of the loopback reference endpoint for AEC. Note that an endpoint
may support AEC, but may not support control of loopback reference endpoint for AEC.
Call SetEchoCancellationRenderEndpoint to set the reference stream for AEC. If the call
to GetService fails with E_NOINTERFACE, then the AEC effect on the endpoint (if
supported), does not allow control over the loopback reference endpoint.

C++

Inheritance

Methods

Remarks

wil::com_ptr_nothrow<IAudioClient> audioClient; 

RETURN_IF_FAILED(device->Activate(_uuidof(IAudioClient), 
CLSCTX_INPROC_SERVER, nullptr, (void **)&audioClient)); 



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22621

Header audioclient.h

// Call Initialize before calling GetService 
// Implementation of IAudioClient::Initialize has been omitted from this 
sample for brevity. 

RETURN_IF_FAILED(audioClient->Initialize(…)); 

// If the capture endpoint supports acoustic echo cancellation (AEC), pass 
it the endpoint id of the 
// audio render endpoint that should be used as the reference stream. If the 
capture endpoint does not 
// support AEC, the GetService call fails with E_NOINTERFACE, so errors from 
GetService are not 
// treated as fatal. 

wil::com_ptr_nothrow<IAcousticEchoCancellationControl> 
audioAcousticEchoCancellationControl; 

if (SUCCEEDED(audioClient-
>GetService(IID_PPV_ARGS(&audioAcousticEchoCancellationControl)))) 
{ 

RETURN_IF_FAILED(audioAcousticEchoCancellationControl-> 
SetEchoCancellationRenderEndpoint(endpointIdOfReferenceAudioStream)); 

} 

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAcousticEchoCancellationControl::SetEc
hoCancellationRenderEndpoint method
(audioclient.h)
Article03/21/2023

Sets the audio render endpoint that should be used as the reference stream for acoustic
echo cancellation (AEC).

C++

endpointId

The endpoint ID of the ender endpoint that should be used as the reference stream for
AEC. Setting an invalid render device ID will fail with E_INVALIDARG. Setting the value to
NULL will result in Windows using its own algorithm to pick the loopback reference
device

Returns an HRESULT value including the following:

Value Description

S_OK Success.

E_INVALIDARG The endpointId value is invalid.

Syntax

HRESULT SetEchoCancellationRenderEndpoint( 
  LPCWSTR endpointId 
); 

Parameters

Return value

Remarks



The following example illustrates the usage of IAcousticEchoCancellationControl
interface. Call IAudioClient::GetService, passing in the IID for the
IAcousticEchoCancellationControl interface. If it succeeds, the capture endpoint
supports control of the loopback reference endpoint for AEC. Note that an endpoint
may support AEC, but may not support control of loopback reference endpoint for AEC.
Call SetEchoCancellationRenderEndpoint to set the reference stream for AEC. If the call
to GetService fails with E_NOINTERFACE, then the AEC effect on the endpoint (if
supported), does not allow control over the loopback reference endpoint.

C++

   

Minimum supported client Windows Build 22621

wil::com_ptr_nothrow<IAudioClient> audioClient; 

RETURN_IF_FAILED(device->Activate(_uuidof(IAudioClient), 
CLSCTX_INPROC_SERVER, nullptr, (void **)&audioClient)); 

// Call Initialize before calling GetService 
// Implementation of IAudioClient::Initialize has been omitted from this 
sample for brevity. 

RETURN_IF_FAILED(audioClient->Initialize(…)); 

// If the capture endpoint supports acoustic echo cancellation (AEC), pass 
it the endpoint id of the 
// audio render endpoint that should be used as the reference stream. If the 
capture endpoint does not 
// support AEC, the GetService call fails with E_NOINTERFACE, so errors from 
GetService are not 
// treated as fatal. 

wil::com_ptr_nothrow<IAcousticEchoCancellationControl> 
audioAcousticEchoCancellationControl; 

if (SUCCEEDED(audioClient-
>GetService(IID_PPV_ARGS(&audioAcousticEchoCancellationControl)))) 
{ 

RETURN_IF_FAILED(audioAcousticEchoCancellationControl-> 
SetEchoCancellationRenderEndpoint(endpointIdOfReferenceAudioStream)); 

} 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioclient.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioCaptureClient interface
(audioclient.h)
Article08/03/2021

The IAudioCaptureClient interface enables a client to read input data from a capture
endpoint buffer. The client obtains a reference to the IAudioCaptureClient interface on
a stream object by calling the IAudioClient::GetService method with parameter riid set to
REFIID IID_IAudioCaptureClient.

The methods in this interface manage the movement of data packets that contain
capture data. The length of a data packet is expressed as the number of audio frames in
the packet. The size of an audio frame is specified by the nBlockAlign member of the
WAVEFORMATEX (or WAVEFORMATEXTENSIBLE) structure that the client obtains by
calling the IAudioClient::GetMixFormat method. The size in bytes of an audio frame
equals the number of channels in the stream multiplied by the sample size per channel.
For example, the frame size is four bytes for a stereo (2-channel) stream with 16-bit
samples. A packet always contains an integral number of audio frames.

When releasing an IAudioCaptureClient interface instance, the client must call the
Release method of the instance from the same thread as the call to
IAudioClient::GetService that created the object.

For a code example that uses the IAudioCaptureClient interface, see Capturing a
Stream.

The IAudioCaptureClient interface inherits from the IUnknown interface.
IAudioCaptureClient also has these types of members:

The IAudioCaptureClient interface has these methods.

 

IAudioCaptureClient::GetBuffer  

Retrieves a pointer to the next available packet of data in the capture endpoint buffer.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioCaptureClient::GetNextPacketSize  

The GetNextPacketSize method retrieves the number of frames in the next data packet in the
capture endpoint buffer.

IAudioCaptureClient::ReleaseBuffer 

The ReleaseBuffer method releases the buffer.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetMixFormat

IAudioClient::GetService

WASAPI

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioCaptureClient::GetBuffer method
(audioclient.h)
Article10/13/2021

Retrieves a pointer to the next available packet of data in the capture endpoint buffer.

C++

[out] ppData

Pointer to a pointer variable into which the method writes the starting address of the
next data packet that is available for the client to read.

[out] pNumFramesToRead

Pointer to a UINT32 variable into which the method writes the frame count (the number
of audio frames available in the data packet). The client should either read the entire
data packet or none of it.

[out] pdwFlags

Pointer to a DWORD variable into which the method writes the buffer-status flags. The
method writes either 0 or the bitwise-OR combination of one or more of the following
_AUDCLNT_BUFFERFLAGS enumeration values:

AUDCLNT_BUFFERFLAGS_SILENT

AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY

AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR

Syntax

HRESULT GetBuffer( 
  [out] BYTE   **ppData, 
  [out] UINT32 *pNumFramesToRead,
  [out] DWORD  *pdwFlags, 
  [out] UINT64 *pu64DevicePosition, 
  [out] UINT64 *pu64QPCPosition 
); 

Parameters



 

[out] pu64DevicePosition

Pointer to a UINT64 variable into which the method writes the device position of the
first audio frame in the data packet. The device position is expressed as the number of
audio frames from the start of the stream. This parameter can be NULL if the client does
not require the device position. For more information, see Remarks.

[out] pu64QPCPosition

Pointer to a UINT64 variable into which the method writes the value of the performance
counter at the time that the audio endpoint device recorded the device position of the
first audio frame in the data packet. The method converts the counter value to 100-
nanosecond units before writing it to *pu64QPCPosition. This parameter can be NULL if
the client does not require the performance counter value. For more information, see
Remarks.

Possible return codes include, but are not limited to, the values shown in the following
table.

Return code Description

S_OK The call succeeded and *pNumFramesToRead is
nonzero, indicating that a packet is ready to be
read.

AUDCLNT_S_BUFFER_EMPTY The call succeeded and *pNumFramesToRead is 0,
indicating that no capture data is available to be
read.

AUDCLNT_E_BUFFER_ERROR Windows 7 and later: GetBuffer failed to retrieve

Note   The AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY flag is not supported in
Windows Vista.

In Windows 7 and later OS releases, this flag can be used for glitch detection. To
start the capture stream, the client application must call IAudioClient::Start
followed by calls to GetBuffer in a loop to read data packets until all of the
available packets in the endpoint buffer have been read. GetBuffer sets the
AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY flag to indicate a glitch in the
buffer pointed by ppData.

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start


a data buffer and *ppData points to NULL. For
more information, see Remarks.

AUDCLNT_E_OUT_OF_ORDER A previous IAudioCaptureClient::GetBuffer call is
still in effect.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged,
or the audio hardware or associated hardware
resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

AUDCLNT_E_BUFFER_OPERATION_PENDING Buffer cannot be accessed because a stream reset
is in progress.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter ppData, pNumFramesToRead, or
pdwFlags is NULL.

This method retrieves the next data packet from the capture endpoint buffer. At a
particular time, the buffer might contain zero, one, or more packets that are ready to
read. Typically, a buffer-processing thread that reads data from a capture endpoint
buffer reads all of the available packets each time the thread executes.

During processing of an audio capture stream, the client application alternately calls
GetBuffer and the IAudioCaptureClient::ReleaseBuffer method. The client can read no
more than a single data packet with each GetBuffer call. Following each GetBuffer call,
the client must call ReleaseBuffer to release the packet before the client can call
GetBuffer again to get the next packet.

Two or more consecutive calls either to GetBuffer or to ReleaseBuffer are not permitted
and will fail with error code AUDCLNT_E_OUT_OF_ORDER. To ensure the correct ordering
of calls, a GetBuffer call and its corresponding ReleaseBuffer call must occur in the
same thread.

During each GetBuffer call, the caller must either obtain the entire packet or none of it.
Before reading the packet, the caller can check the packet size (available through the
pNumFramesToRead parameter) to make sure that it has enough room to store the
entire packet.

During each ReleaseBuffer call, the caller reports the number of audio frames that it
read from the buffer. This number must be either the (nonzero) packet size or 0. If the

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-releasebuffer


number is 0, then the next GetBuffer call will present the caller with the same packet as
in the previous GetBuffer call.

Following each GetBuffer call, the data in the packet remains valid until the next
ReleaseBuffer call releases the buffer.

The client must call ReleaseBuffer after a GetBuffer call that successfully obtains a
packet of any size other than 0. The client has the option of calling or not calling
ReleaseBuffer to release a packet of size 0.

The method outputs the device position and performance counter through the
pu64DevicePosition and pu64QPCPosition output parameters. These values provide a
time stamp for the first audio frame in the data packet. Through the pdwFlags output
parameter, the method indicates whether the reported device position is valid.

The device position that the method writes to *pu64DevicePosition is the stream-relative
position of the audio frame that is currently playing through the speakers (for a
rendering stream) or being recorded through the microphone (for a capture stream).
The position is expressed as the number of frames from the start of the stream. The size
of a frame in an audio stream is specified by the nBlockAlign member of the
WAVEFORMATEX (or WAVEFORMATEXTENSIBLE) structure that specifies the stream
format. The size, in bytes, of an audio frame equals the number of channels in the
stream multiplied by the sample size per channel. For example, for a stereo (2-channel)
stream with 16-bit samples, the frame size is four bytes.

The performance counter value that GetBuffer writes to *pu64QPCPosition is not the
raw counter value obtained from the QueryPerformanceCounter function. If t is the raw
counter value, and if f is the frequency obtained from the QueryPerformanceFrequency
function, GetBuffer calculates the performance counter value as follows:

*pu64QPCPosition = 10,000,000 t/f

The result is expressed in 100-nanosecond units. For more information about
QueryPerformanceCounter and QueryPerformanceFrequency, see the Windows SDK
documentation.

If no new packet is currently available, the method sets *pNumFramesToRead = 0 and
returns status code AUDCLNT_S_BUFFER_EMPTY. In this case, the method does not write
to the variables that are pointed to by the ppData, pu64DevicePosition, and
pu64QPCPosition parameters.

Clients should avoid excessive delays between the GetBuffer call that acquires a packet
and the ReleaseBuffer call that releases the packet. The implementation of the audio
engine assumes that the GetBuffer call and the corresponding ReleaseBuffer call occur

.



Feedback

within the same buffer-processing period. Clients that delay releasing a packet for more
than one period risk losing sample data.

In Windows 7 and later, GetBuffer can return the AUDCLNT_E_BUFFER_ERROR error
code for an audio client that uses the endpoint buffer in the exclusive mode. This error
indicates that the data buffer was not retrieved because a data packet wasn't available
(*ppData received NULL).

If GetBuffer returns AUDCLNT_E_BUFFER_ERROR, the thread consuming the audio
samples must wait for the next processing pass. The client might benefit from keeping a
count of the failed GetBuffer calls. If GetBuffer returns this error repeatedly, the client
can start a new processing loop after shutting down the current client by calling
IAudioClient::Stop, IAudioClient::Reset, and releasing the audio client.

For a code example that calls the GetBuffer method, see Capturing a Stream.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioCaptureClient Interface

IAudioCaptureClient::ReleaseBuffer

IAudioClient::GetMixFormat

IAudioClock::GetPosition

Examples

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-releasebuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getposition


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioCaptureClient::GetNextPacketSize
method (audioclient.h)
Article10/13/2021

The GetNextPacketSize method retrieves the number of frames in the next data packet
in the capture endpoint buffer.

C++

[out] pNumFramesInNextPacket

Pointer to a UINT32 variable into which the method writes the frame count (the number
of audio frames in the next capture packet).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter pNumFramesInNextPacket is NULL.

Syntax

HRESULT GetNextPacketSize( 
  [out] UINT32 *pNumFramesInNextPacket 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Use this method only with shared-mode streams. It does not work with exclusive-mode
streams.

Before calling the IAudioCaptureClient::GetBuffer method to retrieve the next data
packet, the client can call GetNextPacketSize to retrieve the number of audio frames in
the next packet. The count reported by GetNextPacketSize matches the count retrieved
in the GetBuffer call (through the pNumFramesToRead output parameter) that follows
the GetNextPacketSize call.

A packet always consists of an integral number of audio frames.

GetNextPacketSize must be called in the same thread as the GetBuffer and
IAudioCaptureClient::ReleaseBuffer method calls that get and release the packets in the
capture endpoint buffer.

For a code example that uses the GetNextPacketSize method, see Capturing a Stream.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioCaptureClient Interface

IAudioCaptureClient::GetBuffer

IAudioCaptureClient::ReleaseBuffer

IAudioClient::GetCurrentPadding

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-releasebuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-releasebuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IAudioCaptureClient::ReleaseBuffer
method (audioclient.h)
Article10/13/2021

The ReleaseBuffer method releases the buffer.

C++

[in] NumFramesRead

The number of audio frames that the client read from the capture buffer. This parameter
must be either equal to the number of frames in the previously acquired data packet or
0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_INVALID_SIZE The NumFramesRead parameter is set to a value other
than the data packet size or 0.

AUDCLNT_E_OUT_OF_ORDER This call was not preceded by a corresponding
IAudioCaptureClient::GetBuffer call.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT ReleaseBuffer( 
  [in] UINT32 NumFramesRead 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer


The client should call this method when it finishes reading a data packet that it obtained
previously by calling the IAudioCaptureClient::GetBuffer method.

The data in the packet that the client obtained from a GetBuffer call is guaranteed to
remain valid until the client calls ReleaseBuffer to release the packet.

Between each GetBuffer call and its corresponding ReleaseBuffer call, the client must
either read the entire data packet or none of it. If the client reads the entire packet
following the GetBuffer call, then it should call ReleaseBuffer with NumFramesRead set
to the total number of frames in the data packet. In this case, the next call to GetBuffer
will produce a new data packet. If the client reads none of the data from the packet
following the call to GetBuffer, then it should call ReleaseBuffer with NumFramesRead
set to 0. In this case, the next GetBuffer call will produce the same data packet as in the
previous GetBuffer call.

If the client calls ReleaseBuffer with NumFramesRead set to any value other than the
packet size or 0, then the call fails and returns error code AUDCLNT_E_INVALID_SIZE.

Clients should avoid excessive delays between the GetBuffer call that acquires a buffer
and the ReleaseBuffer call that releases the buffer. The implementation of the audio
engine assumes that the GetBuffer call and the corresponding ReleaseBuffer call occur
within the same buffer-processing period. Clients that delay releasing a buffer for more
than one period risk losing sample data.

For a code example that calls the ReleaseBuffer method, see Capturing a Stream.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioCaptureClient Interface

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioCaptureClient::GetBuffer

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer


IAudioClient interface (audioclient.h)
Article07/22/2021

The IAudioClient interface enables a client to create and initialize an audio stream
between an audio application and the audio engine (for a shared-mode stream) or the
hardware buffer of an audio endpoint device (for an exclusive-mode stream). A client
obtains a reference to an IAudioClient interface for an audio endpoint device by
following these steps:

1. By using one of the techniques described in IMMDevice Interface, obtain a
reference to the IMMDevice interface for an audio endpoint device.

2. Call the IMMDevice::Activate method with parameter iid set to REFIID
IID_IAudioClient.

The application thread that uses this interface must be initialized for COM. For more
information about COM initialization, see the description of the CoInitializeEx function
in the Windows SDK documentation.

For code examples that use the IAudioClient interface, see the following topics:

Rendering a Stream
Capturing a Stream
Exclusive-Mode Streams

The IAudioClient interface inherits from the IUnknown interface. IAudioClient also has
these types of members:

The IAudioClient interface has these methods.

 

IAudioClient::GetBufferSize  

The GetBufferSize method retrieves the size (maximum capacity) of the endpoint buffer.

IAudioClient::GetCurrentPadding  

The GetCurrentPadding method retrieves the number of frames of padding in the endpoint buffer.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IAudioClient::GetDevicePeriod  

The GetDevicePeriod method retrieves the length of the periodic interval separating successive
processing passes by the audio engine on the data in the endpoint buffer.

IAudioClient::GetMixFormat  

The GetMixFormat method retrieves the stream format that the audio engine uses for its internal
processing of shared-mode streams.

IAudioClient::GetService  

The GetService method accesses additional services from the audio client object.

IAudioClient::GetStreamLatency  

The GetStreamLatency method retrieves the maximum latency for the current stream and can be
called any time after the stream has been initialized.

IAudioClient::Initialize  

The Initialize method initializes the audio stream.

IAudioClient::IsFormatSupported  

The IsFormatSupported method indicates whether the audio endpoint device supports a
particular stream format.

IAudioClient::Reset  

The Reset method resets the audio stream.

IAudioClient::SetEventHandle  

The SetEventHandle method sets the event handle that the system signals when an audio buffer is
ready to be processed by the client.

IAudioClient::Start  

The Start method starts the audio stream.

IAudioClient::Stop  

The Stop method stops the audio stream.

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IMMDevice::Activate

WASAPI

Note  In Windows 8, the first use of IAudioClient to access the audio device should
be on the STA thread. Calls from an MTA thread may result in undefined behavior.

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioClient::GetBufferSize method
(audioclient.h)
Article10/13/2021

The GetBufferSize method retrieves the size (maximum capacity) of the endpoint buffer.

C++

[out] pNumBufferFrames

Pointer to a UINT32 variable into which the method writes the number of audio frames
that the buffer can hold.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter pNumBufferFrames is NULL.

Syntax

HRESULT GetBufferSize( 
  [out] UINT32 *pNumBufferFrames 
); 

Parameters

Return value

Remarks



This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

This method retrieves the length of the endpoint buffer shared between the client
application and the audio engine. The length is expressed as the number of audio
frames the buffer can hold. The size in bytes of an audio frame is calculated as the
number of channels in the stream multiplied by the sample size per channel. For
example, the frame size is four bytes for a stereo (2-channel) stream with 16-bit samples.

The IAudioClient::Initialize method allocates the buffer. The client specifies the buffer
length in the hnsBufferDuration parameter value that it passes to the Initialize method.
For rendering clients, the buffer length determines the maximum amount of rendering
data that the application can write to the endpoint buffer during a single processing
pass. For capture clients, the buffer length determines the maximum amount of capture
data that the audio engine can read from the endpoint buffer during a single processing
pass. The client should always call GetBufferSize after calling Initialize to determine the
actual size of the allocated buffer, which might differ from the requested size.

Rendering clients can use this value to calculate the largest rendering buffer size that
can be requested from IAudioRenderClient::GetBuffer during each processing pass.

For code examples that call the GetBufferSize method, see the following topics:

Rendering a Stream
Capturing a Stream

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioRenderClient::GetBuffer

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


IAudioClient::GetCurrentPadding
method (audioclient.h)
Article10/13/2021

The GetCurrentPadding method retrieves the number of frames of padding in the
endpoint buffer.

C++

[out] pNumPaddingFrames

Pointer to a UINT32 variable into which the method writes the frame count (the number
of audio frames of padding in the buffer).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter pNumPaddingFrames is NULL.

Syntax

HRESULT GetCurrentPadding( 
  [out] UINT32 *pNumPaddingFrames
); 

Parameters

Return value



This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

This method retrieves a padding value that indicates the amount of valid, unread data
that the endpoint buffer currently contains. A rendering application can use the padding
value to determine how much new data it can safely write to the endpoint buffer
without overwriting previously written data that the audio engine has not yet read from
the buffer. A capture application can use the padding value to determine how much
new data it can safely read from the endpoint buffer without reading invalid data from a
region of the buffer to which the audio engine has not yet written valid data.

The padding value is expressed as a number of audio frames. The size of an audio frame
is specified by the nBlockAlign member of the WAVEFORMATEX (or
WAVEFORMATEXTENSIBLE) structure that the client passed to the IAudioClient::Initialize
method. The size in bytes of an audio frame equals the number of channels in the
stream multiplied by the sample size per channel. For example, the frame size is four
bytes for a stereo (2-channel) stream with 16-bit samples.

For a shared-mode rendering stream, the padding value reported by
GetCurrentPadding specifies the number of audio frames that are queued up to play in
the endpoint buffer. Before writing to the endpoint buffer, the client can calculate the
amount of available space in the buffer by subtracting the padding value from the
buffer length. To ensure that a subsequent call to the IAudioRenderClient::GetBuffer
method succeeds, the client should request a packet length that does not exceed the
available space in the buffer. To obtain the buffer length, call the
IAudioClient::GetBufferSize method.

For a shared-mode capture stream, the padding value reported by GetCurrentPadding
specifies the number of frames of capture data that are available in the next packet in
the endpoint buffer. At a particular moment, zero, one, or more packets of capture data
might be ready for the client to read from the buffer. If no packets are currently
available, the method reports a padding value of 0. Following the GetCurrentPadding
call, an IAudioCaptureClient::GetBuffer method call will retrieve a packet whose length
exactly equals the padding value reported by GetCurrentPadding. Each call to GetBuffer
retrieves a whole packet. A packet always contains an integral number of audio frames.

For a shared-mode capture stream, calling GetCurrentPadding is equivalent to calling
the IAudioCaptureClient::GetNextPacketSize method. That is, the padding value reported
by GetCurrentPadding is equal to the packet length reported by GetNextPacketSize.

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getnextpacketsize


For an exclusive-mode rendering or capture stream that was initialized with the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag, the client typically has no use for the
padding value reported by GetCurrentPadding. Instead, the client accesses an entire
buffer during each processing pass. Each time a buffer becomes available for
processing, the audio engine notifies the client by signaling the client's event handle.
For more information about this flag, see IAudioClient::Initialize.

For an exclusive-mode rendering or capture stream that was not initialized with the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag, the client can use the padding value
obtained from GetCurrentPadding in a way that is similar to that described previously
for a shared-mode stream. The details are as follows.

First, for an exclusive-mode rendering stream, the padding value specifies the number of
audio frames that are queued up to play in the endpoint buffer. As before, the client can
calculate the amount of available space in the buffer by subtracting the padding value
from the buffer length.

Second, for an exclusive-mode capture stream, the padding value reported by
GetCurrentPadding specifies the current length of the next packet. However, this
padding value is a snapshot of the packet length, which might increase before the client
calls the IAudioCaptureClient::GetBuffer method. Thus, the length of the packet retrieved
by GetBuffer is at least as large as, but might be larger than, the padding value reported
by the GetCurrentPadding call that preceded the GetBuffer call. In contrast, for a
shared-mode capture stream, the length of the packet obtained from GetBuffer always
equals the padding value reported by the preceding GetCurrentPadding call.

For a code example that calls the GetCurrentPadding method, see Rendering a Stream.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioCaptureClient::GetBuffer

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getbuffer


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioCaptureClient::GetNextPacketSize

IAudioClient Interface

IAudioClient::Initialize

IAudioRenderClient::GetBuffer

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiocaptureclient-getnextpacketsize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


IAudioClient::GetDevicePeriod method
(audioclient.h)
Article10/13/2021

The GetDevicePeriod method retrieves the length of the periodic interval separating
successive processing passes by the audio engine on the data in the endpoint buffer.

C++

[out] phnsDefaultDevicePeriod

Pointer to a REFERENCE_TIME variable into which the method writes a time value
specifying the default interval between periodic processing passes by the audio engine.
The time is expressed in 100-nanosecond units. For information about
REFERENCE_TIME, see the Windows SDK documentation.

[out] phnsMinimumDevicePeriod

Pointer to a REFERENCE_TIME variable into which the method writes a time value
specifying the minimum interval between periodic processing passes by the audio
endpoint device. The time is expressed in 100-nanosecond units.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have

Syntax

HRESULT GetDevicePeriod( 
  [out] REFERENCE_TIME *phnsDefaultDevicePeriod, 
  [out] REFERENCE_TIME *phnsMinimumDevicePeriod 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/DirectShow/reference-time
https://learn.microsoft.com/en-us/windows/desktop/DirectShow/reference-time


been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameters phnsDefaultDevicePeriod and
phnsMinimumDevicePeriod are both NULL.

The client can call this method before calling the IAudioClient::Initialize method.

The phnsDefaultDevicePeriod parameter specifies the default scheduling period for a
shared-mode stream. The phnsMinimumDevicePeriod parameter specifies the minimum
scheduling period for an exclusive-mode stream.

At least one of the two parameters, phnsDefaultDevicePeriod and
phnsMinimumDevicePeriod, must be non-NULL or the method returns immediately with
error code E_POINTER. If both parameters are non-NULL, then the method outputs both
the default and minimum periods.

For a shared-mode stream, the audio engine periodically processes the data in the
endpoint buffer, which the engine shares with the client application. The engine
schedules itself to perform these processing passes at regular intervals.

The period between processing passes by the audio engine is fixed for a particular audio
endpoint device and represents the smallest processing quantum for the audio engine.
This period plus the stream latency between the buffer and endpoint device represents
the minimum possible latency that an audio application can achieve.

The client has the option of scheduling its periodic processing thread to run at the same
time interval as the audio engine. In this way, the client can achieve the smallest possible
latency for a shared-mode stream. However, in an application for which latency is less
important, the client can reduce the process-switching overhead on the CPU by
scheduling its processing passes to occur less frequently. In this case, the endpoint
buffer must be proportionally larger to compensate for the longer period between
processing passes.

The client determines the buffer size during its call to the IAudioClient::Initialize method.
For a shared-mode stream, if the client passes this method an hnsBufferDuration
parameter value of 0, the method assumes that the periods for the client and audio
engine are guaranteed to be equal, and the method will allocate a buffer small enough
to achieve the minimum possible latency. (In fact, any hnsBufferDuration value between
0 and the sum of the audio engine's period and device latency will have the same

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Was this page helpful?

Get help at Microsoft Q&A

result.) Similarly, for an exclusive-mode stream, if the client sets hnsBufferDuration to 0,
the method assumes that the period of the client is set to the minimum period of the
audio endpoint device, and the method will allocate a buffer small enough to achieve
the minimum possible latency.

If the client chooses to run its periodic processing thread less often, at the cost of
increased latency, it can do so as long as it creates an endpoint buffer during the
IAudioClient::Initialize call that is sufficiently large.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


IAudioClient::GetMixFormat method
(audioclient.h)
Article10/13/2021

The GetMixFormat method retrieves the stream format that the audio engine uses for
its internal processing of shared-mode streams.

C++

[out] ppDeviceFormat

Pointer to a pointer variable into which the method writes the address of the mix format.
This parameter must be a valid, non-NULL pointer to a pointer variable. The method
writes the address of a WAVEFORMATEX (or WAVEFORMATEXTENSIBLE) structure to
this variable. The method allocates the storage for the structure. The caller is responsible
for freeing the storage, when it is no longer needed, by calling the CoTaskMemFree
function. If the GetMixFormat call fails, *ppDeviceFormat is NULL. For information about
WAVEFORMATEX, WAVEFORMATEXTENSIBLE, and CoTaskMemFree, see the Windows
SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

Syntax

HRESULT GetMixFormat( 
  [out] WAVEFORMATEX **ppDeviceFormat 
); 

Parameters

Return value



AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter ppDeviceFormat is NULL.

E_OUTOFMEMORY Out of memory.

The client can call this method before calling the IAudioClient::Initialize method. When
creating a shared-mode stream for an audio endpoint device, the Initialize method
always accepts the stream format obtained from a GetMixFormat call on the same
device.

The mix format is the format that the audio engine uses internally for digital processing
of shared-mode streams. This format is not necessarily a format that the audio endpoint
device supports. Thus, the caller might not succeed in creating an exclusive-mode
stream with a format obtained by calling GetMixFormat.

For example, to facilitate digital audio processing, the audio engine might use a mix
format that represents samples as floating-point values. If the device supports only
integer PCM samples, then the engine converts the samples to or from integer PCM
values at the connection between the device and the engine. However, to avoid
resampling, the engine might use a mix format with a sample rate that the device
supports.

To determine whether the Initialize method can create a shared-mode or exclusive-
mode stream with a particular format, call the IAudioClient::IsFormatSupported method.

By itself, a WAVEFORMATEX structure cannot specify the mapping of channels to
speaker positions. In addition, although WAVEFORMATEX specifies the size of the
container for each audio sample, it cannot specify the number of bits of precision in a
sample (for example, 20 bits of precision in a 24-bit container). However, the
WAVEFORMATEXTENSIBLE structure can specify both the mapping of channels to
speakers and the number of bits of precision in each sample. For this reason, the
GetMixFormat method retrieves a format descriptor that is in the form of a
WAVEFORMATEXTENSIBLE structure instead of a standalone WAVEFORMATEX
structure. Through the ppDeviceFormat parameter, the method outputs a pointer to the
WAVEFORMATEX structure that is embedded at the start of this
WAVEFORMATEXTENSIBLE structure. For more information about WAVEFORMATEX
and WAVEFORMATEXTENSIBLE, see the Windows DDK documentation.

For more information about the GetMixFormat method, see Device Formats. For code
examples that call GetMixFormat, see the following topics:

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-formats


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Rendering a Stream
Capturing a Stream

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

IAudioClient::IsFormatSupported

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported


IAudioClient::GetService method
(audioclient.h)
Article10/13/2021

The GetService method accesses additional services from the audio client object.

C++

[in] riid

The interface ID for the requested service. The client should set this parameter to one of
the following REFIID values:

IID_IAudioCaptureClient

IID_IAudioClientDuckingControl

IID_IAudioClock

IID_IAudioRenderClient

IID_IAudioSessionControl

IID_IAudioStreamVolume

IID_IChannelAudioVolume

IID_IMFTrustedOutput

IID_ISimpleAudioVolume

For more information, see Remarks.

[out] ppv

Syntax

HRESULT GetService( 
  [in]  REFIID riid, 
  [out] void   **ppv 
); 

Parameters



Pointer to a pointer variable into which the method writes the address of an instance of
the requested interface. Through this method, the caller obtains a counted reference to
the interface. The caller is responsible for releasing the interface, when it is no longer
needed, by calling the interface's Release method. If the GetService call fails, *ppv is
NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppv is NULL.

E_NOINTERFACE The requested interface is not available.

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been initialized.

AUDCLNT_E_WRONG_ENDPOINT_TYPE The caller tried to access an IAudioCaptureClient
interface on a rendering endpoint, or an
IAudioRenderClient interface on a capture endpoint.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

The GetService method supports the following service interfaces:

IAudioCaptureClient
IAudioClock
IAudioRenderClient
IAudioSessionControl
IAudioStreamVolume
IChannelAudioVolume

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiorenderclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiorenderclient
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume


IMFTrustedOutput
ISimpleAudioVolume

In Windows 7, a new service identifier, IID_IMFTrustedOutput, has been added that
facilitates the use of output trust authority (OTA) objects. These objects can operate
inside or outside the Media Foundation's protected media path (PMP) and send content
outside the Media Foundation pipeline. If the caller is outside PMP, then the OTA may
not operate in the PMP, and the protection settings are less robust. OTAs must
implement the IMFTrustedOutput interface. By passing IID_IMFTrustedOutput in
GetService, an application can retrieve a pointer to the object's IMFTrustedOutput
interface. For more information about protected objects and IMFTrustedOutput, see
"Protected Media Path" in the Media Foundation SDK documentation.

For information about using trusted audio drivers in OTAs, see Protected User Mode
Audio (PUMA).

Note that activating IMFTrustedOutput through this mechanism works regardless of
whether the caller is running in PMP. However, if the caller is not running in a protected
process (that is, the caller is not within Media Foundation's PMP) then the audio OTA
might not operate in the PMP and the protection settings are less robust.

To obtain the interface ID for a service interface, use the __uuidof operator. For example,
the interface ID of IAudioCaptureClient is defined as follows:

syntax

For information about the __uuidof operator, see the Windows SDK documentation.

To release the IAudioClient object and free all its associated resources, the client must
release all references to any service objects that were created by calling GetService, in
addition to calling Release on the IAudioClient interface itself. The client must release a
service from the same thread that releases the IAudioClient object.

The IAudioSessionControl, IAudioStreamVolume, IChannelAudioVolume, and
ISimpleAudioVolume interfaces control and monitor aspects of audio sessions and
shared-mode streams. These interfaces do not work with exclusive-mode streams.

For code examples that call the GetService method, see the following topics:

Rendering a Stream

const IID IID_IAudioCaptureClient  __uuidof(IAudioCaptureClient) 

https://learn.microsoft.com/en-us/windows/desktop/api/mfidl/nn-mfidl-imftrustedoutput
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/mfidl/nn-mfidl-imftrustedoutput
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/protected-user-mode-audio--puma-
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Capturing a Stream

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioCaptureClient Interface

IAudioClient Interface

IAudioClient::Initialize

IAudioClock Interface

IAudioRenderClient Interface

IAudioSessionControl Interface

IAudioStreamVolume Interface

IChannelAudioVolume Interface

ISimpleAudioVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiorenderclient
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


IAudioClient::GetStreamLatency method
(audioclient.h)
Article10/13/2021

The GetStreamLatency method retrieves the maximum latency for the current stream
and can be called any time after the stream has been initialized.

C++

[out] phnsLatency

Pointer to a REFERENCE_TIME variable into which the method writes a time value
representing the latency. The time is expressed in 100-nanosecond units. For more
information about REFERENCE_TIME, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter phnsLatency is NULL.

Syntax

HRESULT GetStreamLatency( 
  [out] REFERENCE_TIME *phnsLatency 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/DirectShow/reference-time


Feedback

Was this page helpful?

Get help at Microsoft Q&A

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

This method retrieves the maximum latency for the current stream. The value will not
change for the lifetime of the IAudioClient object.

Rendering clients can use this latency value to compute the minimum amount of data
that they can write during any single processing pass. To write less than this minimum is
to risk introducing glitches into the audio stream. For more information, see
IAudioRenderClient::GetBuffer.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

IAudioRenderClient::GetBuffer

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


IAudioClient::Initialize method
(audioclient.h)
Article10/13/2021

The Initialize method initializes the audio stream.

C++

[in] ShareMode

The sharing mode for the connection. Through this parameter, the client tells the audio
engine whether it wants to share the audio endpoint device with other clients. The client
should set this parameter to one of the following AUDCLNT_SHAREMODE enumeration
values:

AUDCLNT_SHAREMODE_EXCLUSIVE

AUDCLNT_SHAREMODE_SHARED

[in] StreamFlags

Flags to control creation of the stream. The client should set this parameter to 0 or to
the bitwise OR of one or more of the AUDCLNT_STREAMFLAGS_XXX Constants or the
AUDCLNT_SESSIONFLAGS_XXX Constants.

[in] hnsBufferDuration

The buffer capacity as a time value. This parameter is of type REFERENCE_TIME and is
expressed in 100-nanosecond units. This parameter contains the buffer size that the

Syntax

HRESULT Initialize( 
  [in] AUDCLNT_SHAREMODE  ShareMode, 
  [in] DWORD              StreamFlags, 
  [in] REFERENCE_TIME     hnsBufferDuration, 
  [in] REFERENCE_TIME     hnsPeriodicity, 
  [in] const WAVEFORMATEX *pFormat, 
  [in] LPCGUID            AudioSessionGuid 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-sessionflags-xxx-constants


caller requests for the buffer that the audio application will share with the audio engine
(in shared mode) or with the endpoint device (in exclusive mode). If the call succeeds,
the method allocates a buffer that is a least this large. For more information about
REFERENCE_TIME, see the Windows SDK documentation. For more information about
buffering requirements, see Remarks.

[in] hnsPeriodicity

The device period. This parameter can be nonzero only in exclusive mode. In shared
mode, always set this parameter to 0. In exclusive mode, this parameter specifies the
requested scheduling period for successive buffer accesses by the audio endpoint
device. If the requested device period lies outside the range that is set by the device's
minimum period and the system's maximum period, then the method clamps the period
to that range. If this parameter is 0, the method sets the device period to its default
value. To obtain the default device period, call the IAudioClient::GetDevicePeriod
method. If the AUDCLNT_STREAMFLAGS_EVENTCALLBACK stream flag is set and
AUDCLNT_SHAREMODE_EXCLUSIVE is set as the ShareMode, then hnsPeriodicity must
be nonzero and equal to hnsBufferDuration.

[in] pFormat

Pointer to a format descriptor. This parameter must point to a valid format descriptor of
type WAVEFORMATEX (or WAVEFORMATEXTENSIBLE). For more information, see
Remarks.

[in] AudioSessionGuid

Pointer to a session GUID. This parameter points to a GUID value that identifies the
audio session that the stream belongs to. If the GUID identifies a session that has been
previously opened, the method adds the stream to that session. If the GUID does not
identify an existing session, the method opens a new session and adds the stream to
that session. The stream remains a member of the same session for its lifetime. Setting
this parameter to NULL is equivalent to passing a pointer to a GUID_NULL value.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_ALREADY_INITIALIZED The IAudioClient object is already
initialized.

Return value



AUDCLNT_E_WRONG_ENDPOINT_TYPE The AUDCLNT_STREAMFLAGS_LOOPBACK
flag is set but the endpoint device is a
capture device, not a rendering device.

AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED

 
The requested buffer size is not aligned.
This code can be returned for a render or a
capture device if the caller specified
AUDCLNT_SHAREMODE_EXCLUSIVE and the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK
flags. The caller must call Initialize again
with the aligned buffer size. For more
information, see Remarks.

AUDCLNT_E_BUFFER_SIZE_ERROR

 
Indicates that the buffer duration value
requested by an exclusive-mode client is
out of range. The requested duration value
for pull mode must not be greater than
5000 milliseconds; for push mode the
duration value must not be greater than 2
seconds.

AUDCLNT_E_CPUUSAGE_EXCEEDED Indicates that the process-pass duration
exceeded the maximum CPU usage. The
audio engine keeps track of CPU usage by
maintaining the number of times the
process-pass duration exceeds the
maximum CPU usage. The maximum CPU
usage is calculated as a percent of the
engine's periodicity. The percentage value is
the system's CPU throttle value (within the
range of 10% and 90%). If this value is not
found, then the default value of 40% is used
to calculate the maximum CPU usage.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been
unplugged, or the audio hardware or
associated hardware resources have been
reconfigured, disabled, removed, or
otherwise made unavailable for use.

Note  Applies to Windows 7 and
later.

Note  Applies to Windows 7 and
later.

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


AUDCLNT_E_DEVICE_IN_USE The endpoint device is already in use. Either
the device is being used in exclusive mode,
or the device is being used in shared mode
and the caller asked to use the device in
exclusive mode.

AUDCLNT_E_ENDPOINT_CREATE_FAILED The method failed to create the audio
endpoint for the render or the capture
device. This can occur if the audio endpoint
device has been unplugged, or the audio
hardware or associated hardware resources
have been reconfigured, disabled, removed,
or otherwise made unavailable for use.

AUDCLNT_E_INVALID_DEVICE_PERIOD

 
Indicates that the device period requested
by an exclusive-mode client is greater than
5000 milliseconds.

AUDCLNT_E_UNSUPPORTED_FORMAT The audio engine (shared mode) or audio
endpoint device (exclusive mode) does not
support the specified format.

AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED The caller is requesting exclusive-mode use
of the endpoint device, but the user has
disabled exclusive-mode use of the device.

AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL The
AUDCLNT_STREAMFLAGS_EVENTCALLBACK
flag is set but parameters hnsBufferDuration
and hnsPeriodicity are not equal.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter pFormat is NULL.

E_INVALIDARG Parameter pFormat points to an invalid
format description; or the
AUDCLNT_STREAMFLAGS_LOOPBACK flag is
set but ShareMode is not equal to
AUDCLNT_SHAREMODE_SHARED; or the
AUDCLNT_STREAMFLAGS_CROSSPROCESS
flag is set but ShareMode is equal to
AUDCLNT_SHAREMODE_EXCLUSIVE.

Note  Applies to Windows 7 and
later.



A prior call to SetClientProperties was made
with an invalid category for audio/render
streams.

E_OUTOFMEMORY Out of memory.

After activating an IAudioClient interface on an audio endpoint device, the client must
successfully call Initialize once and only once to initialize the audio stream between the
client and the device. The client can either connect directly to the audio hardware
(exclusive mode) or indirectly through the audio engine (shared mode). In the Initialize
call, the client specifies the audio data format, the buffer size, and audio session for the
stream.

 
An attempt to create a shared-mode stream can succeed only if the audio device is
already operating in shared mode or the device is currently unused. An attempt to
create a shared-mode stream fails if the device is already operating in exclusive mode.

If a stream is initialized to be event driven and in shared mode, ShareMode is set to
AUDCLNT_SHAREMODE_SHARED and one of the stream flags that are set includes
AUDCLNT_STREAMFLAGS_EVENTCALLBACK. For such a stream, the associated
application must also obtain a handle by making a call to IAudioClient::SetEventHandle.
When it is time to retire the stream, the audio engine can then use the handle to release
the stream objects. Failure to call IAudioClient::SetEventHandle before releasing the
stream objects can cause a delay of several seconds (a time-out period) while the audio
engine waits for an available handle. After the time-out period expires, the audio engine
then releases the stream objects.

Whether an attempt to create an exclusive-mode stream succeeds depends on several
factors, including the availability of the device and the user-controlled settings that
govern exclusive-mode operation of the device. For more information, see Exclusive-
Mode Streams.

An IAudioClient object supports exactly one connection to the audio engine or audio
hardware. This connection lasts for the lifetime of the IAudioClient object.

The client should call the following methods only after calling Initialize:

Remarks

Note  In Windows 8, the first use of IAudioClient to access the audio device should
be on the STA thread. Calls from an MTA thread may result in undefined behavior.

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-seteventhandle
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient


IAudioClient::GetBufferSize
IAudioClient::GetCurrentPadding
IAudioClient::GetService
IAudioClient::GetStreamLatency
IAudioClient::Reset
IAudioClient::SetEventHandle
IAudioClient::Start
IAudioClient::Stop

The following methods do not require that Initialize be called first:

IAudioClient::GetDevicePeriod
IAudioClient::GetMixFormat
IAudioClient::IsFormatSupported

These methods can be called any time after activating the IAudioClient interface.

Before calling Initialize to set up a shared-mode or exclusive-mode connection, the
client can call the IAudioClient::IsFormatSupported method to discover whether the
audio engine or audio endpoint device supports a particular format in that mode. Before
opening a shared-mode connection, the client can obtain the audio engine's mix format
by calling the IAudioClient::GetMixFormat method.

The endpoint buffer that is shared between the client and audio engine must be large
enough to prevent glitches from occurring in the audio stream between processing
passes by the client and audio engine. For a rendering endpoint, the client thread
periodically writes data to the buffer, and the audio engine thread periodically reads
data from the buffer. For a capture endpoint, the engine thread periodically writes to the
buffer, and the client thread periodically reads from the buffer. In either case, if the
periods of the client thread and engine thread are not equal, the buffer must be large
enough to accommodate the longer of the two periods without allowing glitches to
occur.

The client specifies a buffer size through the hnsBufferDuration parameter. The client is
responsible for requesting a buffer that is large enough to ensure that glitches cannot
occur between the periodic processing passes that it performs on the buffer. Similarly,
the Initialize method ensures that the buffer is never smaller than the minimum buffer
size needed to ensure that glitches do not occur between the periodic processing
passes that the engine thread performs on the buffer. If the client requests a buffer size
that is smaller than the audio engine's minimum required buffer size, the method sets
the buffer size to this minimum buffer size rather than to the buffer size requested by
the client.

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getstreamlatency
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-seteventhandle
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat


If the client requests a buffer size (through the hnsBufferDuration parameter) that is not
an integral number of audio frames, the method rounds up the requested buffer size to
the next integral number of frames.

Following the Initialize call, the client should call the IAudioClient::GetBufferSize method
to get the precise size of the endpoint buffer. During each processing pass, the client
will need the actual buffer size to calculate how much data to transfer to or from the
buffer. The client calls the IAudioClient::GetCurrentPadding method to determine how
much of the data in the buffer is currently available for processing.

To achieve the minimum stream latency between the client application and audio
endpoint device, the client thread should run at the same period as the audio engine
thread. The period of the engine thread is fixed and cannot be controlled by the client.
Making the client's period smaller than the engine's period unnecessarily increases the
client thread's load on the processor without improving latency or decreasing the buffer
size. To determine the period of the engine thread, the client can call the
IAudioClient::GetDevicePeriod method. To set the buffer to the minimum size required
by the engine thread, the client should call Initialize with the hnsBufferDuration
parameter set to 0. Following the Initialize call, the client can get the size of the
resulting buffer by calling IAudioClient::GetBufferSize.

A client has the option of requesting a buffer size that is larger than what is strictly
necessary to make timing glitches rare or nonexistent. Increasing the buffer size does
not necessarily increase the stream latency. For a rendering stream, the latency through
the buffer is determined solely by the separation between the client's write pointer and
the engine's read pointer. For a capture stream, the latency through the buffer is
determined solely by the separation between the engine's write pointer and the client's
read pointer.

The loopback flag (AUDCLNT_STREAMFLAGS_LOOPBACK) enables audio loopback. A
client can enable audio loopback only on a rendering endpoint with a shared-mode
stream. Audio loopback is provided primarily to support acoustic echo cancellation
(AEC).

An AEC client requires both a rendering endpoint and the ability to capture the output
stream from the audio engine. The engine's output stream is the global mix that the
audio device plays through the speakers. If audio loopback is enabled, a client can open
a capture buffer for the global audio mix by calling the IAudioClient::GetService method
to obtain an IAudioCaptureClient interface on the rendering stream object. If audio
loopback is not enabled, then an attempt to open a capture buffer on a rendering
stream will fail. The loopback data in the capture buffer is in the device format, which

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient


the client can obtain by querying the device's PKEY_AudioEngine_DeviceFormat
property.

On Windows versions prior to Windows 10, a pull-mode capture client will not receive
any events when a stream is initialized with event-driven buffering
(AUDCLNT_STREAMFLAGS_EVENTCALLBACK) and is loopback-enabled
(AUDCLNT_STREAMFLAGS_LOOPBACK). If the stream is opened with this configuration,
the Initialize call succeeds, but relevant events are not raised to notify the capture client
each time a buffer becomes ready for processing. To work around this, initialize a render
stream in event-driven mode. Each time the client receives an event for the render
stream, it must signal the capture client to run the capture thread that reads the next set
of samples from the capture endpoint buffer. As of Windows 10 the relevant event
handles are now set for loopback-enabled streams that are active.

Note that all streams must be opened in share mode because exclusive-mode streams
cannot operate in loopback mode. For more information about audio loopback, see
Loopback Recording.

The AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag indicates that processing of the
audio buffer by the client will be event driven. WASAPI supports event-driven buffering
to enable low-latency processing of both shared-mode and exclusive-mode streams.

The initial release of Windows Vista supports event-driven buffering (that is, the use of
the AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag) for rendering streams only.

In the initial release of Windows Vista, for capture streams, the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag is supported only in shared mode.
Setting this flag has no effect for exclusive-mode capture streams. That is, although the
application specifies this flag in exclusive mode through the Initialize call, the
application will not receive any events that are usually required to capture the audio
stream. In the Windows Vista Service Pack 1 release, this flag is functional in shared-
mode and exclusive mode; an application can set this flag to enable event-buffering for
capture streams. For more information about capturing an audio stream, see Capturing
a Stream.

To enable event-driven buffering, the client must provide an event handle to the system.
Following the Initialize call and before calling the IAudioClient::Start method to start the
stream, the client must call the IAudioClient::SetEventHandle method to set the event
handle. While the stream is running, the system periodically signals the event to indicate
to the client that audio data is available for processing. Between processing passes, the
client thread waits on the event handle by calling a synchronization function such as
WaitForSingleObject. For more information about synchronization functions, see the
Windows SDK documentation.

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/pkey-audioengine-deviceformat
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/loopback-recording
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-seteventhandle


For a shared-mode stream that uses event-driven buffering, the caller must set both
hnsPeriodicity and hnsBufferDuration to 0. The Initialize method determines how large a
buffer to allocate based on the scheduling period of the audio engine. Although the
client's buffer processing thread is event driven, the basic buffer management process,
as described previously, is unaltered. Each time the thread awakens, it should call
IAudioClient::GetCurrentPadding to determine how much data to write to a rendering
buffer or read from a capture buffer. In contrast to the two buffers that the Initialize
method allocates for an exclusive-mode stream that uses event-driven buffering, a
shared-mode stream requires a single buffer.

For an exclusive-mode stream that uses event-driven buffering, the caller must specify
nonzero values for hnsPeriodicity and hnsBufferDuration, and the values of these two
parameters must be equal. The Initialize method allocates two buffers for the stream.
Each buffer is equal in duration to the value of the hnsBufferDuration parameter.
Following the Initialize call for a rendering stream, the caller should fill the first of the
two buffers before starting the stream. For a capture stream, the buffers are initially
empty, and the caller should assume that each buffer remains empty until the event for
that buffer is signaled. While the stream is running, the system alternately sends one
buffer or the other to the client—this form of double buffering is referred to as "ping-
ponging". Each time the client receives a buffer from the system (which the system
indicates by signaling the event), the client must process the entire buffer. For example,
if the client requests a packet size from the IAudioRenderClient::GetBuffer method that
does not match the buffer size, the method fails. Calls to the
IAudioClient::GetCurrentPadding method are unnecessary because the packet size
must always equal the buffer size. In contrast to the buffering modes discussed
previously, the latency for an event-driven, exclusive-mode stream depends directly on
the buffer size.

As explained in Audio Sessions, the default behavior for a session that contains
rendering streams is that its volume and mute settings persist across application
restarts. The AUDCLNT_STREAMFLAGS_NOPERSIST flag overrides the default behavior
and makes the settings nonpersistent. This flag has no effect on sessions that contain
capture streams—the settings for those sessions are never persistent. In addition, the
settings for a session that contains a loopback stream (a stream that is initialized with
the AUDCLNT_STREAMFLAGS_LOOPBACK flag) are not persistent.

Only a session that connects to a rendering endpoint device can have persistent volume
and mute settings. The first stream to be added to the session determines whether the
session's settings are persistent. Thus, if the AUDCLNT_STREAMFLAGS_NOPERSIST or
AUDCLNT_STREAMFLAGS_LOOPBACK flag is set during initialization of the first stream,
the session's settings are not persistent. Otherwise, they are persistent. Their persistence

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions


is unaffected by additional streams that might be subsequently added or removed
during the lifetime of the session object.

After a call to Initialize has successfully initialized an IAudioClient interface instance, a
subsequent Initialize call to initialize the same interface instance will fail and return error
code E_ALREADY_INITIALIZED.

If the initial call to Initialize fails, subsequent Initialize calls might fail and return error
code E_ALREADY_INITIALIZED, even though the interface has not been initialized. If this
occurs, release the IAudioClient interface and obtain a new IAudioClient interface from
the MMDevice API before calling Initialize again.

For code examples that call the Initialize method, see the following topics:

Rendering a Stream
Capturing a Stream
Exclusive-Mode Streams

Starting with Windows 7, Initialize can return AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED
for a render or a capture device. This indicates that the buffer size, specified by the caller
in the hnsBufferDuration parameter, is not aligned. This error code is returned only if the
caller requested an exclusive-mode stream (AUDCLNT_SHAREMODE_EXCLUSIVE) and
event-driven buffering (AUDCLNT_STREAMFLAGS_EVENTCALLBACK).

If Initialize returns AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED, the caller must call
Initialize again and specify the aligned buffer size. Use the following steps:

1. Call IAudioClient::GetBufferSize and receive the next-highest-aligned buffer size (in
frames).

2. Call IAudioClient::Release to release the audio client used in the previous call that
returned AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED.

3. Calculate the aligned buffer size in 100-nanosecond units (hns). The buffer size is
(REFERENCE_TIME)((10000.0 * 1000 / WAVEFORMATEX.nSamplesPerSecond * nFrames) +

0.5) . In this formula, nFrames  is the buffer size retrieved by GetBufferSize.
4. Call the IMMDevice::Activate method with parameter iid set to REFIID

IID_IAudioClient to create a new audio client.
5. Call Initialize again on the created audio client and specify the new buffer size and

periodicity.

Starting with Windows 10, hardware-offloaded audio streams must be event driven. This
means that if you call IAudioClient2::SetClientProperties and set the bIsOffload
parameter of the AudioClientProperties to TRUE, you must specify the

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties-r1


AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag in the StreamFlags parameter to
IAudioClient::Initialize.

The following example code shows how to respond to the
AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED return code.

C++

Examples

#define REFTIMES_PER_SEC  10000000 

HRESULT CreateAudioClient(IMMDevice* pDevice, IAudioClient** ppAudioClient) 
{ 
    if (!pDevice) 
    { 
        return E_INVALIDARG; 
    } 

    if (!ppAudioClient) 
    { 
        return E_POINTER; 
    } 

    HRESULT hr = S_OK; 
     
    WAVEFORMATEX *pwfx = NULL; 

    REFERENCE_TIME hnsRequestedDuration = REFTIMES_PER_SEC; 

    UINT32 nFrames = 0; 

    IAudioClient *pAudioClient = NULL; 

    // Get the audio client. 
    CHECK_HR( hr = pDevice->Activate( 
        __uuidof(IAudioClient),  
        CLSCTX_ALL, 
        NULL,  
        (void**)&pAudioClient)); 

    // Get the device format. 
    CHECK_HR( hr = pAudioClient->GetMixFormat(&pwfx)); 

    // Open the stream and associate it with an audio session. 
    hr = pAudioClient->Initialize(  
        AUDCLNT_SHAREMODE_EXCLUSIVE, 
        AUDCLNT_STREAMFLAGS_EVENTCALLBACK,  
        hnsRequestedDuration,  
        hnsRequestedDuration,  
        pwfx,  
        NULL); 



    // If the requested buffer size is not aligned... 
    if (hr == AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) 
    {  
        // Get the next aligned frame. 
        CHECK_HR( hr = pAudioClient->GetBufferSize(&nFrames)); 
         
        hnsRequestedDuration = (REFERENCE_TIME) 
        ((10000.0 * 1000 / pwfx->nSamplesPerSec * nFrames) + 0.5); 

        // Release the previous allocations. 
        SAFE_RELEASE(pAudioClient); 
        CoTaskMemFree(pwfx); 
         
        // Create a new audio client. 
        CHECK_HR( hr = pDevice->Activate( 
            __uuidof(IAudioClient),  
            CLSCTX_ALL, 
            NULL,  
            (void**)&pAudioClient)); 
     
        // Get the device format.
        CHECK_HR( hr = pAudioClient->GetMixFormat(&pwfx)); 
         
        // Open the stream and associate it with an audio session. 
        CHECK_HR( hr = pAudioClient->Initialize(  
            AUDCLNT_SHAREMODE_EXCLUSIVE, 
            AUDCLNT_STREAMFLAGS_EVENTCALLBACK,  
            hnsRequestedDuration,  
            hnsRequestedDuration,  
            pwfx,  
            NULL)); 
    } 
    else 
    { 
        CHECK_HR (hr); 
    } 
     
    // Return to the caller. 
    *(ppAudioClient) = pAudioClient; 
    (*ppAudioClient)->AddRef(); 

done: 

    // Clean up. 
    CoTaskMemFree(pwfx); 
    SAFE_RELEASE(pAudioClient); 
    return hr; 
} 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioclient.h

IAudioCaptureClient Interface

IAudioClient Interface

IAudioClient::GetBufferSize

IAudioClient::GetCurrentPadding

IAudioClient::GetDevicePeriod

IAudioClient::GetMixFormat

IAudioClient::GetService

IAudioClient::SetEventHandle

IAudioClient::Start

IAudioRenderClient::GetBuffer

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiocaptureclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-seteventhandle
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


IAudioClient::IsFormatSupported
method (audioclient.h)
Article07/18/2023

The IsFormatSupported method indicates whether the audio endpoint device supports
a particular stream format.

C++

[in] ShareMode

The sharing mode for the stream format. Through this parameter, the client indicates
whether it wants to use the specified format in exclusive mode or shared mode. The
client should set this parameter to one of the following AUDCLNT_SHAREMODE
enumeration values:

AUDCLNT_SHAREMODE_EXCLUSIVE

AUDCLNT_SHAREMODE_SHARED

[in] pFormat

Pointer to the specified stream format. This parameter points to a caller-allocated
format descriptor of type WAVEFORMATEX or WAVEFORMATEXTENSIBLE. The client
writes a format description to this structure before calling this method. For information
about WAVEFORMATEX and WAVEFORMATEXTENSIBLE, see the Windows DDK
documentation.

[out] ppClosestMatch

Syntax

HRESULT IsFormatSupported(
  [in]  AUDCLNT_SHAREMODE  ShareMode,
  [in]  const WAVEFORMATEX *pFormat,
  [out] WAVEFORMATEX       **ppClosestMatch
);

Parameters



Pointer to a pointer variable into which the method writes the address of a
WAVEFORMATEX or WAVEFORMATEXTENSIBLE structure. This structure specifies the
supported format that is closest to the format that the client specified through the
pFormat parameter. For shared mode (that is, if the ShareMode parameter is
AUDCLNT_SHAREMODE_SHARED), set ppClosestMatch to point to a valid, non-NULL
pointer variable. For exclusive mode, set ppClosestMatch to NULL. The method allocates
the storage for the structure. The caller is responsible for freeing the storage, when it is
no longer needed, by calling the CoTaskMemFree function. If the IsFormatSupported
call fails and ppClosestMatch is non-NULL, the method sets *ppClosestMatch to NULL.
For information about CoTaskMemFree, see the Windows SDK documentation.

Return code Description

S_OK Succeeded and the audio endpoint device supports the
specified stream format.

S_FALSE Succeeded with a closest match to the specified format.

AUDCLNT_E_UNSUPPORTED_FORMAT Succeeded but the specified format is not supported in
exclusive mode.

 

If the operation fails, possible return codes include, but are not limited to, the values
shown in the following table.

Return code Description

E_POINTER Parameter pFormat is NULL, or ppClosestMatch is NULL
and ShareMode is AUDCLNT_SHAREMODE_SHARED.

E_INVALIDARG Parameter ShareMode is a value other than
AUDCLNT_SHAREMODE_SHARED or
AUDCLNT_SHAREMODE_EXCLUSIVE.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Return value

Remarks



This method provides a way for a client to determine, before calling
IAudioClient::Initialize, whether the audio engine supports a particular stream format.

For exclusive mode, IsFormatSupported returns S_OK if the audio endpoint device
supports the caller-specified format, or it returns AUDCLNT_E_UNSUPPORTED_FORMAT
if the device does not support the format. The ppClosestMatch parameter can be NULL.
If it is not NULL, the method writes NULL to *ppClosestMatch.

For shared mode, if the audio engine supports the caller-specified format,
IsFormatSupported sets *ppClosestMatch to NULL and returns S_OK. If the audio
engine does not support the caller-specified format but does support a similar format,
the method retrieves the similar format through the ppClosestMatch parameter and
returns S_FALSE. If the audio engine does not support the caller-specified format or any
similar format, the method sets *ppClosestMatch to NULL and returns
AUDCLNT_E_UNSUPPORTED_FORMAT.

In shared mode, the audio engine always supports the mix format, which the client can
obtain by calling the IAudioClient::GetMixFormat method. In addition, the audio engine
might support similar formats that have the same sample rate and number of channels
as the mix format but differ in the representation of audio sample values. The audio
engine represents sample values internally as floating-point numbers, but if the caller-
specified format represents sample values as integers, the audio engine typically can
convert between the integer sample values and its internal floating-point
representation.

The audio engine might be able to support an even wider range of shared-mode
formats if the installation package for the audio device includes a local effects (LFX)
audio processing object (APO) that can handle format conversions. An LFX APO is a
software module that performs device-specific processing of an audio stream. The audio
graph builder in the Windows audio service inserts the LFX APO into the stream
between each client and the audio engine. When a client calls the IsFormatSupported
method and the method determines that an LFX APO is installed for use with the device,
the method directs the query to the LFX APO, which indicates whether it supports the
caller-specified format.

For example, a particular LFX APO might accept a 6-channel surround sound stream
from a client and convert the stream to a stereo format that can be played through
headphones. Typically, an LFX APO supports only client formats with sample rates that
match the sample rate of the mix format.

For more information about APOs, see Windows Audio Processing Objects. For more
information about the IsFormatSupported method, see Device Formats.

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/windows-audio-processing-objects
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-formats


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::GetMixFormat

IAudioClient::Initialize

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


IAudioClient::Reset method
(audioclient.h)
Article06/29/2021

The Reset method resets the audio stream.

C++

If the method succeeds, it returns S_OK. If the method succeeds and the stream was
already reset, the method returns S_FALSE. If it fails, possible return codes include, but
are not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully
initialized.

AUDCLNT_E_NOT_STOPPED The audio stream was not stopped at the time the
call was made.

AUDCLNT_E_BUFFER_OPERATION_PENDING The client is currently writing to or reading from
the buffer.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

Reset is a control method that the client calls to reset a stopped audio stream. Resetting
the stream flushes all pending data and resets the audio clock stream position to 0. This
method fails if it is called on a stream that is not stopped.

Syntax

HRESULT Reset(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


IAudioClient::SetEventHandle method
(audioclient.h)
Article10/13/2021

The SetEventHandle method sets the event handle that the system signals when an
audio buffer is ready to be processed by the client.

C++

[in] eventHandle

The event handle.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter eventHandle is NULL or an invalid
handle.

AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED The audio stream was not initialized for event-
driven buffering.

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully
initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged,
or the audio hardware or associated hardware
resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

Syntax

HRESULT SetEventHandle( 
  [in] HANDLE eventHandle 
); 

Parameters

Return value



AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

During stream initialization, the client can, as an option, enable event-driven buffering.
To do so, the client calls the IAudioClient::Initialize method with the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag set. After enabling event-driven
buffering, and before calling the IAudioClient::Start method to start the stream, the
client must call SetEventHandle to register the event handle that the system will signal
each time a buffer becomes ready to be processed by the client.

The event handle should be in the nonsignaled state at the time that the client calls the
Start method.

If the client has enabled event-driven buffering of a stream, but the client calls the Start
method for that stream without first calling SetEventHandle, the Start call will fail and
return an error code.

If the client does not enable event-driven buffering of a stream but attempts to set an
event handle for the stream by calling SetEventHandle, the call will fail and return an
error code.

For a code example that calls the SetEventHandle method, see Exclusive-Mode Streams.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioClient::Initialize

IAudioClient::Start

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start


IAudioClient::Start method
(audioclient.h)
Article06/29/2021

The Start method starts the audio stream.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_NOT_STOPPED The audio stream was not stopped at the time of the
Start call.

AUDCLNT_E_EVENTHANDLE_NOT_SET The audio stream is configured to use event-driven
buffering, but the caller has not called
IAudioClient::SetEventHandle to set the event handle on
the stream.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

Syntax

HRESULT Start(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-seteventhandle
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Start is a control method that the client calls to start the audio stream. Starting the
stream causes the IAudioClient object to begin streaming data between the endpoint
buffer and the audio engine. It also causes the stream's audio clock to resume counting
from its current position.

The first time this method is called following initialization of the stream, the IAudioClient
object's stream position counter begins at 0. Otherwise, the clock resumes from its
position at the time that the stream was last stopped. Resetting the stream forces the
stream position back to 0.

To avoid start-up glitches with rendering streams, clients should not call Start until the
audio engine has been initially loaded with data by calling the
IAudioRenderClient::GetBuffer and IAudioRenderClient::ReleaseBuffer methods on the
rendering interface.

For code examples that call the Start method, see the following topics:

Rendering a Stream
Capturing a Stream

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

IAudioRenderClient::GetBuffer

IAudioRenderClient::ReleaseBuffer

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioClient::Stop method
(audioclient.h)
Article06/29/2021

The Stop method stops the audio stream.

C++

If the method succeeds and stops the stream, it returns S_OK. If the method succeeds
and the stream was already stopped, the method returns S_FALSE. If it fails, possible
return codes include, but are not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The client has not been successfully initialized.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method requires prior initialization of the IAudioClient interface. All calls to this
method will fail with the error AUDCLNT_E_NOT_INITIALIZED until the client initializes
the audio stream by successfully calling the IAudioClient::Initialize method.

Stop is a control method that stops a running audio stream. This method stops data
from streaming through the client's connection with the audio engine. Stopping the
stream freezes the stream's audio clock at its current stream position. A subsequent call
to IAudioClient::Start causes the stream to resume running from that position. If
necessary, the client can call the IAudioClient::Reset method to reset the position while
the stream is stopped.

For code examples that call the Stop method, see the following topics:

Syntax

HRESULT Stop(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Rendering a Stream
Capturing a Stream

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient Interface

IAudioClient::Initialize

IAudioClient::Reset

IAudioClient::Start

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/capturing-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start


IAudioClient2 interface (audioclient.h)
Article07/22/2021

The IAudioClient2 interface is derived from the IAudioClient interface, with a set of
additional methods that enable a Windows Audio Session API (WASAPI) audio client to
do the following: opt in for offloading, query stream properties, and get information
from the hardware that handles offloading.The audio client can be successful in creating
an offloaded stream if the underlying endpoint supports the hardware audio engine, the
endpoint has been enumerated and discovered by the audio system, and there are still
offload pin instances available on the endpoint.

The IAudioClient2 interface inherits from the IAudioClient interface. IAudioClient2 also
has these types of members:

The IAudioClient2 interface has these methods.

 

IAudioClient2::GetBufferSizeLimits  

The GetBufferSizeLimits method returns the buffer size limits of the hardware audio engine in
100-nanosecond units.

IAudioClient2::IsOffloadCapable  

The IsOffloadCapable method retrieves information about whether or not the endpoint on which
a stream is created is capable of supporting an offloaded audio stream.

IAudioClient2::SetClientProperties  

Sets the properties of the audio stream by populating an AudioClientProperties structure.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

AudioClientProperties

Core Audio Interfaces

IAudioClient

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties~r1
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient


IAudioClient2::GetBufferSizeLimits
method (audioclient.h)
Article10/13/2021

The GetBufferSizeLimits method returns the buffer size limits of the hardware audio
engine in 100-nanosecond units.

C++

[in] pFormat

A pointer to the target format that is being queried for the buffer size limit.

[in] bEventDriven

Boolean value to indicate whether or not the stream can be event-driven.

[out] phnsMinBufferDuration

Returns a pointer to the minimum buffer size (in 100-nanosecond units) that is required
for the underlying hardware audio engine to operate at the format specified in the
pFormat parameter, without frequent audio glitching.

[out] phnsMaxBufferDuration

Returns a pointer to the maximum buffer size (in 100-nanosecond units) that the
underlying hardware audio engine can support for the format specified in the pFormat
parameter.

Syntax

HRESULT GetBufferSizeLimits( 
  [in]  const WAVEFORMATEX *pFormat, 
  [in]  BOOL               bEventDriven, 
  [out] REFERENCE_TIME     *phnsMinBufferDuration, 
  [out] REFERENCE_TIME     *phnsMaxBufferDuration 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

The GetBufferSizeLimits method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code. For example, it can return
AUDCLNT_E_DEVICE_INVALIDATED, if the device was removed and the method is
called.

The GetBufferSizeLimits method is a device-facing method 
and does not require prior audio stream initialization.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient2

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2


IAudioClient2::IsOffloadCapable method
(audioclient.h)
Article10/13/2021

The IsOffloadCapable method retrieves information about whether or not the endpoint
on which a stream is created is capable of supporting an offloaded audio stream.

C++

[in] Category

An enumeration that specifies the category of an audio stream.

[out] pbOffloadCapable

A pointer to a Boolean value. TRUE indicates that the endpoint is offload-capable. FALSE
indicates that the endpoint is not offload-capable.

The IsOffloadCapable method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Syntax

HRESULT IsOffloadCapable( 
  [in]  AUDIO_STREAM_CATEGORY Category, 
  [out] BOOL                  *pbOffloadCapable 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioclient.h

AUDIO_STREAM_CATEGORY

IAudioClient2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2


IAudioClient2::SetClientProperties
method (audioclient.h)
Article08/23/2022

Sets the properties of the audio stream by populating an AudioClientProperties
structure.

C++

[in] pProperties

Pointer to an AudioClientProperties structure.

The SetClientProperties method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

Starting with Windows 10, hardware-offloaded audio streams must be event driven. This
means that if you call IAudioClient2::SetClientProperties and set the bIsOffload
parameter of the AudioClientProperties to TRUE, you must specify the
AUDCLNT_STREAMFLAGS_EVENTCALLBACK flag in the StreamFlags parameter to
IAudioClient::Initialize.

   

Syntax

HRESULT SetClientProperties( 
  [in] const AudioClientProperties *pProperties 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties-r1
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties-r1
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties~r1
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

AudioClientProperties

IAudioClient2

IAudioClient::Initialize

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/api/audioclient/ns-audioclient-audioclientproperties-r1
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


IAudioClient3 interface (audioclient.h)
Article11/23/2021

The IAudioClient3 interface is derived from the IAudioClient2 interface, with a set of
additional methods that enable a Windows Audio Session API (WASAPI) audio client to
query for the audio engine's supported periodicities and current periodicity as well as
request initialization of a shared audio stream with a specified periodicity.

The IAudioClient3 interface inherits from IAudioClient2. IAudioClient3 also has these
types of members:

The IAudioClient3 interface has these methods.

 

IAudioClient3::GetCurrentSharedModeEnginePeriod  

Returns the current format and periodicity of the audio engine.

IAudioClient3::GetSharedModeEnginePeriod  

Returns the range of periodicities supported by the engine for the specified stream format.

IAudioClient3::InitializeSharedAudioStream  

Initializes a shared stream with the specified periodicity.

   

Minimum supported client Windows 10 [desktop apps | UWP apps]

Minimum supported server Windows Server 2016 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

IAudioClient2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2


IAudioClient3::GetCurrentSharedModeE
nginePeriod method (audioclient.h)
Article10/13/2021

Returns the current format and periodicity of the audio engine. This method enables
audio clients to match the current period of the audio engine.

C++

[out] ppFormat

Type: WAVEFORMATEX**

The current device format that is being used by the audio engine.

[out] pCurrentPeriodInFrames

Type: UINT32*

The current period of the audio engine, in audio frames.

Type: HRESULT

This method returns S_OK to indicate that it has completed successfully. Otherwise it
returns an appropriate error code.

Syntax

HRESULT GetCurrentSharedModeEnginePeriod( 
  [out] WAVEFORMATEX **ppFormat, 
  [out] UINT32       *pCurrentPeriodInFrames 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/com/structure-of-com-error-codes


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

 

   

Minimum supported client Windows 10 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioClient3

Note  The values returned by this method are instantaneous values and may be
invalid immediately after the call returns if, for example, another audio client sets
the periodicity or format to a different value.

Note  The caller is responsible for calling CoTaskMemFree to deallocate the
memory of the WAVEFORMATEX structure populated by this method.

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient3
https://learn.microsoft.com/en-us/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree


IAudioClient3::GetSharedModeEnginePe
riod method (audioclient.h)
Article10/13/2021

Returns the range of periodicities supported by the engine for the specified stream
format. The periodicity of the engine is the rate at which the engine wakes an event-
driven audio client to transfer audio data to or from the engine. The values returned
depend on the characteristics of the audio client as specified through a previous call to
IAudioClient2::SetClientProperties.

C++

[in] pFormat

Type: const WAVEFORMATEX*

The stream format for which the supported periodicities are queried.

[out] pDefaultPeriodInFrames

Type: UINT32*

The default period with which the engine will wake the client for transferring audio
samples

[out] pFundamentalPeriodInFrames

Type: UINT32*

Syntax

HRESULT GetSharedModeEnginePeriod( 
  [in]  const WAVEFORMATEX *pFormat, 
  [out] UINT32             *pDefaultPeriodInFrames, 
  [out] UINT32             *pFundamentalPeriodInFrames, 
  [out] UINT32             *pMinPeriodInFrames, 
  [out] UINT32             *pMaxPeriodInFrames 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)


The fundamental period with which the engine will wake the client for transferring audio
samples. When setting the audio engine periodicity, you must use an integral multiple
of this value.

[out] pMinPeriodInFrames

Type: UINT32*

The shortest period, in audio frames, with which the audio engine will wake the client for
transferring audio samples.

[out] pMaxPeriodInFrames

Type: UINT32*

The longest period, in audio frames, with which the audio engine will wake the client for
transferring audio samples.

Type: HRESULT

This method returns S_OK to indicate that it has completed successfully. Otherwise it
returns an appropriate error code.

Audio clients request a specific periodicity from the audio engine with the
PeriodInFrames parameter to IAudioClient3::InitializeSharedAudioStream. The value of
PeriodInFrames must be an integral multiple of the value returned in the
pFundamentalPeriodInFrames parameter. PeriodInFrames must also be greater than or
equal to the value returned in pMinPeriodInFrames and less than or equal to the value of
pMaxPeriodInFrames.

For example, for a 44100 kHz format, GetSharedModeEnginePeriod might return:

pDefaultPeriodInFrames = 448 frames (about 10.16 milliseconds)

pFundamentalPeriodInFrames = 4 frames (about 0.09 milliseconds)

pMinPeriodInFrames = 48 frames (about 1.09 milliseconds)

pMaxPeriodInFrames = 448 frames (same as the default)

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/com/structure-of-com-error-codes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient3-initializesharedaudiostream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Allowed values for the PeriodInFrames parameter to InitializeSharedAudioStream would
include 48 and 448. They would also include things like 96 and 128.

They would NOT include 4 (which is smaller than the minimum allowed value) or 98
(which is not a multiple of the fundamental) or 1000 (which is larger than the maximum
allowed value).

   

Minimum supported client Windows 10 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioClient3

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient3


IAudioClient3::InitializeSharedAudioStre
am method (audioclient.h)
Article10/13/2021

Initializes a shared stream with the specified periodicity.

C++

[in] StreamFlags

Type: DWORD

Flags to control creation of the stream. The client should set this parameter to 0 or to
the bitwise OR of one or more of the supported AUDCLNT_STREAMFLAGS_XXX
Constants or AUDCLNT_SESSIONFLAGS_XXX Constants. The supported
AUDCLNT_STREAMFLAGS_XXX Constants for this parameter when using this method
are:

AUDCLNT_STREAMFLAGS_EVENTCALLBACK

[in] PeriodInFrames

Type: UINT32

Periodicity requested by the client. This value must be an integral multiple of the value
returned in the pFundamentalPeriodInFrames parameter to
IAudioClient3::GetSharedModeEnginePeriod. PeriodInFrames must also be greater than
or equal to the value returned in pMinPeriodInFrames and less than or equal to the value
returned in pMaxPeriodInFrames.

Syntax

HRESULT InitializeSharedAudioStream( 
  [in]           DWORD              StreamFlags, 
  [in]           UINT32             PeriodInFrames, 
  [in]           const WAVEFORMATEX *pFormat, 
  [in, optional] LPCGUID            AudioSessionGuid 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-sessionflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient3-getsharedmodeengineperiod


[in] pFormat

Type: const WAVEFORMATEX*

Pointer to a format descriptor. This parameter must point to a valid format descriptor of
type WAVEFORMATEX or WAVEFORMATEXTENSIBLE. For more information, see the
Remarks section for IAudioClient::Initialize.

[in, optional] AudioSessionGuid

Type: LPCGUID

Pointer to a session GUID. This parameter points to a GUID value that identifies the
audio session that the stream belongs to. If the GUID identifies a session that has been
previously opened, the method adds the stream to that session. If the GUID does not
identify an existing session, the method opens a new session and adds the stream to
that session. The stream remains a member of the same session for its lifetime. Setting
this parameter to NULL is equivalent to passing a pointer to a GUID_NULL value.

Type: HRESULT

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_ALREADY_INITIALIZED The IAudioClient object is already initialized.

AUDCLNT_E_WRONG_ENDPOINT_TYPE The AUDCLNT_STREAMFLAGS_LOOPBACK flag is
set but the endpoint device is a capture device,
not a rendering device.

AUDCLNT_E_CPUUSAGE_EXCEEDED Indicates that the process-pass duration exceeded
the maximum CPU usage. The audio engine keeps
track of CPU usage by maintaining the number of
times the process-pass duration exceeds the
maximum CPU usage. The maximum CPU usage is
calculated as a percent of the engine's periodicity.
The percentage value is the system's CPU throttle
value (within the range of 10% and 90%). If this
value is not found, then the default value of 40% is
used to calculate the maximum CPU usage.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged,
or the audio hardware or associated hardware

Return value

https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

AUDCLNT_E_DEVICE_IN_USE The endpoint device is already in use. Either the
device is being used in exclusive mode, or the
device is being used in shared mode and the caller
asked to use the device in exclusive mode.

AUDCLNT_E_ENGINE_FORMAT_LOCKED The client specified
AUDCLNT_STREAMOPTIONS_MATCH_FORMAT
when calling IAudioClient2::SetClientProperties,
but the format of the audio engine has been
locked by another client. In this case, you can call
IAudioClient2::SetClientProperties without
specifying the match format option and then use
audio engine's current format.

AUDCLNT_E_ENGINE_PERIODICITY_LOCKED The client specified
AUDCLNT_STREAMOPTIONS_MATCH_FORMAT
when calling IAudioClient2::SetClientProperties,
but the periodicity of the audio engine has been
locked by another client. In this case, you can call
IAudioClient2::SetClientProperties without
specifying the match format option and then use
audio engine's current periodicity.

AUDCLNT_E_ENDPOINT_CREATE_FAILED The method failed to create the audio endpoint
for the render or the capture device. This can
occur if the audio endpoint device has been
unplugged, or the audio hardware or associated
hardware resources have been reconfigured,
disabled, removed, or otherwise made unavailable
for use.

AUDCLNT_E_INVALID_DEVICE_PERIOD Indicates that the requested device period
specified with the PeriodInFrames is not an
integral multiple of the fundamental periodicity of
the audio engine, is shorter than the engine's
minimum period, or is longer than the engine's
maximum period. Get the supported periodicity
values of the engine by calling
IAudioClient3::GetSharedModeEnginePeriod.

AUDCLNT_E_UNSUPPORTED_FORMAT The audio engine (shared mode) or audio
endpoint device (exclusive mode) does not
support the specified format.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter pFormat is NULL.

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/ne-audioclient-audclnt_streamoptions
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/ne-audioclient-audclnt_streamoptions
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient3-getsharedmodeengineperiod


E_INVALIDARG Parameter pFormat points to an invalid format
description; or the
AUDCLNT_STREAMFLAGS_LOOPBACK flag is set
but ShareMode is not equal to
AUDCLNT_SHAREMODE_SHARED; or the
AUDCLNT_STREAMFLAGS_CROSSPROCESS flag is
set but ShareMode is equal to
AUDCLNT_SHAREMODE_EXCLUSIVE.

A prior call to SetClientProperties was made with
an invalid category for audio/render streams.

E_OUTOFMEMORY Out of memory.

Unlike IAudioClient::Initialize, this method does not allow you to specify a buffer size.
The buffer size is computed based on the periodicity requested with the PeriodInFrames
parameter. It is the client app's responsibility to ensure that audio samples are
transferred in and out of the buffer in a timely manner.

Audio clients should check for allowed values for the PeriodInFrames parameter by
calling IAudioClient3::GetSharedModeEnginePeriod. The value of PeriodInFrames must
be an integral multiple of the value returned in the pFundamentalPeriodInFrames
parameter. PeriodInFrames must also be greater than or equal to the value returned in
pMinPeriodInFrames and less than or equal to the value of pMaxPeriodInFrames.

For example, for a 44100 kHz format, GetSharedModeEnginePeriod might return:

pDefaultPeriodInFrames = 448 frames (about 10.16 milliseconds)

pFundamentalPeriodInFrames = 4 frames (about 0.09 milliseconds)

pMinPeriodInFrames = 48 frames (about 1.09 milliseconds)

pMaxPeriodInFrames = 448 frames (same as the default)

Allowed values for the PeriodInFrames parameter to InitializeSharedAudioStream would
include 48 and 448. They would also include things like 96 and 128.

They would NOT include 4 (which is smaller than the minimum allowed value) or 98
(which is not a multiple of the fundamental) or 1000 (which is larger than the maximum
allowed value).

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient2-setclientproperties
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient3-getsharedmodeengineperiod


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioClient

IAudioClient2

IAudioClient3

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient2
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient3


IAudioClientDuckingControl interface
(audioclient.h)
Article02/16/2023

Provides a method, SetDuckingOptionsForCurrentStream, that allows an app to specify
that the system shouldn't duck the audio of other streams when the app's audio render
stream is active.

The IAudioClientDuckingControl interface inherits from the IUnknown interface.

The IAudioClientDuckingControl interface has these methods.

 

IAudioClientDuckingControl::SetDuckingOptionsForCurrentStream  

Sets the audio ducking options for an audio render stream.

Get an instance of the IAudioClientDuckingControl interface by calling
IAudioClient::GetService, passing in the interface ID constant
IID_IAudioClientDuckingControl.

IAudioClientDuckingControl only controls the ducking caused by the audio stream
(IAudioClient) that the interface is obtained from.

Audio from applications could continue to be ducked if there are other concurrent
applications with streams that cause ducking.

   

Minimum supported client Windows 10 Build 20348

Inheritance

Methods

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioclient.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioClientDuckingControl::SetDuckin
gOptionsForCurrentStream method
(audioclient.h)
Article06/24/2021

Sets the audio ducking options for an audio render stream. Allows an app to specify that
the system shouldn't duck the audio of other streams when the app's audio render
stream is active.

C++

options

A value from the AUDIO_DUCKING_OPTIONS enumeration specifying the requested
ducking behavior.

On successful completion, returns S_OK.

Get an instance of the IAudioClientDuckingControl interface by calling
IAudioClient::GetService, passing in the interface ID constant
IID_IAudioClientDuckingControl.

IAudioClientDuckingControl only controls the ducking caused by the audio stream
(IAudioClient) that the interface is obtained from.

Syntax

HRESULT SetDuckingOptionsForCurrentStream( 
  AUDIO_DUCKING_OPTIONS options 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Audio from applications could continue to be ducked if there are other concurrent
applications with streams that cause ducking.

   

Minimum supported client Windows 10 Build 20348

Header audioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioClock interface (audioclient.h)
Article07/22/2021

The IAudioClock interface enables a client to monitor a stream's data rate and the
current position in the stream. The client obtains a reference to the IAudioClock
interface of a stream object by calling the IAudioClient::GetService method with
parameter riid set to REFIID IID_IAudioClock.

When releasing an IAudioClock interface instance, the client must call the interface's
Release method from the same thread as the call to IAudioClient::GetService that
created the object.

The IAudioClock interface inherits from the IUnknown interface. IAudioClock also has
these types of members:

The IAudioClock interface has these methods.

 

IAudioClock::GetCharacteristics  

The GetCharacteristics method is reserved for future use.

IAudioClock::GetFrequency  

The GetFrequency method gets the device frequency.

IAudioClock::GetPosition  

The GetPosition method gets the current device position.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetService

WASAPI

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioClock::GetCharacteristics method
(audioclient.h)
Article10/13/2021

The GetCharacteristics method is reserved for future use.

C++

[out] pdwCharacteristics

Pointer to a DWORD variable into which the method writes a value that indicates the
characteristics of the audio clock.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwCharacteristics is NULL.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Syntax

HRESULT GetCharacteristics( 
  [out] DWORD *pdwCharacteristics
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioclient.h

IAudioClock Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock


IAudioClock::GetFrequency method
(audioclient.h)
Article10/13/2021

The GetFrequency method gets the device frequency.

C++

[out] pu64Frequency

Pointer to a UINT64 variable into which the method writes the device frequency. For
more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pu64Frequency is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetFrequency( 
  [out] UINT64 *pu64Frequency 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

The device frequency is the frequency generated by the hardware clock in the audio
device. This method reports the device frequency in units that are compatible with those
of the device position that the IAudioClock::GetPosition method reports. For example, if,
for a particular stream, the GetPosition method expresses the position p as a byte offset,
the GetFrequency method expresses the frequency f in bytes per second. For any
stream, the offset in seconds from the start of the stream can always be reliably
calculated as p/f regardless of the units in which p and f are expressed.

In Windows Vista, the device frequency reported by successive calls to GetFrequency
never changes during the lifetime of a stream.

If the clock generated by an audio device runs at a nominally constant frequency, the
frequency might still vary slightly over time due to drift or jitter with respect to a
reference clock. The reference clock might be a wall clock or the system clock used by
the QueryPerformanceCounter function. The GetFrequency method ignores such
variations and simply reports a constant frequency. However, the position reported by
the IAudioClient::GetPosition method takes all such variations into account to report an
accurate position value each time it is called. For more information about
QueryPerformanceCounter, see the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClock Interface

IAudioClock::GetPosition

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getposition
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getposition


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IAudioClock::GetPosition method
(audioclient.h)
Article10/13/2021

The GetPosition method gets the current device position.

C++

[out] pu64Position

Pointer to a UINT64 variable into which the method writes the device position. The
device position is the offset from the start of the stream to the current position in the
stream. However, the units in which this offset is expressed are undefined—the device
position value has meaning only in relation to the frequency reported by the
IAudioClock::GetFrequency method. For more information, see Remarks.

[out] pu64QPCPosition

Pointer to a UINT64 variable into which the method writes the value of the performance
counter at the time that the audio endpoint device read the device position
(*pu64Position) in response to the GetPosition call. The method converts the counter
value to 100-nanosecond time units before writing it to *pu64QPCPosition. This
parameter can be NULL if the client does not require the performance counter value.

If the method succeeds and obtains an accurate reading of the position, it returns S_OK.
If the method succeeds but the duration of the call is long enough to detract from the
accuracy of the position reading, the method returns S_FALSE. If it fails, possible return
codes include, but are not limited to, the values shown in the following table.

Syntax

HRESULT GetPosition( 
  [out] UINT64 *pu64Position, 
  [out] UINT64 *pu64QPCPosition 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getfrequency


Return code Description

E_POINTER Parameter pu64Position is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Rendering or capture clients that need to expose a clock based on the stream's current
playback or record position can use this method to derive that clock.

This method retrieves two correlated stream-position values:

Device position. The client obtains the device position through output parameter
pu64Position. This is the stream position of the sample that is currently playing
through the speakers (for a rendering stream) or being recorded through the
microphone (for a capture stream).
Performance counter. The client obtains the performance counter through output
parameter pu64QPCPosition. This is the counter value that the method obtained by
calling the QueryPerformanceCounter function at the time that the audio
endpoint device recorded the stream position (*pu64Position). Note that
GetPosition converts the counter value to 100-nanosecond time units.

The device position is meaningless unless it is combined with the device frequency
reported by the IAudioClock::GetFrequency method. The reason is that the units in
which the device positions for different streams are expressed might vary according to
factors such as whether the stream was opened in shared mode or exclusive mode.
However, the frequency f obtained from GetFrequency is always expressed in units that
are compatible with those of the device position p. Thus, the stream-relative offset in
seconds can always be calculated as p/f.

The device position is a stream-relative offset. That is, it is specified as an offset from the
start of the stream. The device position can be thought of as an offset into an idealized
buffer that contains the entire stream and is contiguous from beginning to end.

Given the device position and the performance counter at the time of the GetPosition
call, the client can provide a more timely estimate of the device position at a slightly
later time by calling QueryPerformanceCounter to obtain the current performance
counter, and extrapolating the device position based on how far the counter has

Remarks



advanced since the original device position was recorded. The client can call the
QueryPerformanceFrequency function to determine the frequency of the clock that
increments the counter. Before comparing the raw counter value obtained from
QueryPerformanceCounter to the value written to *pu64QPCPosition by GetPosition,
convert the raw counter value to 100-nanosecond time units as follows:

1. Multiply the raw counter value by 10,000,000.
2. Divide the result by the counter frequency obtained from

QueryPerformanceFrequency.

For more information about QueryPerformanceCounter and
QueryPerformanceFrequency, see the Windows SDK documentation.

Immediately following creation of a new stream, the device position is 0. Following a call
to the IAudioClient::Start method, the device position increments at a uniform rate. The
IAudioClient::Stop method freezes the device position, and a subsequent Start call
causes the device position to resume incrementing from its value at the time of the Stop
call. A call to IAudioClient::Reset, which should only occur while the stream is stopped,
resets the device position to 0.

When a new or reset rendering stream initially begins running, its device position might
remain 0 for a few milliseconds until the audio data has had time to propagate from the
endpoint buffer to the rendering endpoint device. The device position changes from 0
to a nonzero value when the data begins playing through the device.

Successive device readings are monotonically increasing. Although the device position
might not change between two successive readings, the device position never decreases
from one reading to the next.

The pu64Position parameter must be a valid, non-NULL pointer or the method will fail
and return error code E_POINTER.

Position measurements might occasionally be delayed by intermittent, high-priority
events. These events might be unrelated to audio. In the case of an exclusive-mode
stream, the method can return S_FALSE instead of S_OK if the method succeeds but the
duration of the call is long enough to detract from the accuracy of the reported
position. When this occurs, the caller has the option of calling the method again to
attempt to retrieve a more accurate position (as indicated by return value S_OK).
However, the caller should avoid performing this test in an infinite loop in the event that
the method consistently returns S_FALSE.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient::Reset

IAudioClient::Start

IAudioClient::Stop

IAudioClock Interface

IAudioClock::GetFrequency

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getfrequency


IAudioClock2 interface (audioclient.h)
Article07/22/2021

The IAudioClock2 interface is used to get the current device position.

To get a reference to the IAudioClock2 interface, the application must call
IAudioClock::QueryInterface to request the interface pointer from the stream object's
IAudioClock interface.

The client obtains a reference to the IAudioClock interface of a stream object by calling
the IAudioClient::GetService method with parameter riid set to REFIID IID_IAudioClock.

When releasing an IAudioClock2 interface instance, the client must call the interface's
Release method from the same thread as the call to IAudioClient::GetService that
created the object.

The IAudioClock2 interface inherits from the IUnknown interface. IAudioClock2 also has
these types of members:

The IAudioClock2 interface has these methods.

 

IAudioClock2::GetDevicePosition  

The GetDevicePosition method gets the current device position, in frames, directly from the
hardware.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetService

IAudioClock

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock


IAudioClock2::GetDevicePosition
method (audioclient.h)
Article10/13/2021

The GetDevicePosition method gets the current device position, in frames, directly from
the hardware.

C++

[out] DevicePosition

Receives the device position, in frames. The received position is an unprocessed value
that the method obtains directly from the hardware. For more information, see Remarks.

[out] QPCPosition

Receives the value of the performance counter at the time that the audio endpoint
device read the device position retrieved in the DevicePosition parameter in response to
the GetDevicePosition call. 
GetDevicePosition converts the counter value to 100-nanosecond time units before
writing it to QPCPosition. QPCPosition can be NULL if the client does not require the
performance counter value. For more information, see Remarks.

If the method succeeds, it returns S_OK.

Return code Description

E_POINTER Parameter DevicePosition is NULL.

Syntax

HRESULT GetDevicePosition( 
  [out] UINT64 *DevicePosition, 
  [out] UINT64 *QPCPosition 
); 

Parameters

Return value



AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint has been disconnected.

AUDCLNT_S_POSITION_STALLED The IAudioClient::Start method has not been called for
this stream.

This method only applies to shared-mode streams.

This method retrieves two correlated stream-position values:

Device position. The client retrieves the unprocessed device position in
DevicePosition. This is the stream position of the sample that is currently playing
through the speakers (for a rendering stream) or being recorded through the
microphone (for a capture stream). The sampling rate of the device endpoint may
be different from the sampling rate of the mix format used by the client. To retrieve
the device position from the client, call IAudioClock::GetPosition.
Performance counter. The client retrieves the performance counter in QPCPosition.
GetDevicePosition obtains the counter value by calling the
QueryPerformanceCounter function at the time that the audio endpoint device
stores the stream position in the DevicePosition parameter of the
GetDevicePosition method. GetDevicePosition converts the counter value to 100-
nanosecond time units. For more information about QueryPerformanceCounter
and QueryPerformanceFrequency, see the Windows SDK documentation.

Given the device position and the performance counter at the time of the
GetDevicePosition call, the client can get a more timely estimate of the device position
at a later time by calling QueryPerformanceCounter to obtain the current performance
counter, and extrapolating the device position based on how far the counter has
advanced since the original device position was recorded. The client can call the
QueryPerformanceCounter function to get the frequency of the clock that increments
the counter. Before comparing the raw counter value obtained from
QueryPerformanceCounter to the value retrieved by GetDevicePosition, convert the
raw counter value to 100-nanosecond time units as follows:

1. Multiply the raw counter value by 10,000,000.
2. Divide the result by the counter frequency obtained from

QueryPerformanceFrequency.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclock-getposition


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioClock2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock2


IAudioClockAdjustment interface
(audioclient.h)
Article07/22/2021

The IAudioClockAdjustment interface is used to adjust the sample rate of a stream.

The client obtains a reference to the IAudioClockAdjustment interface of a stream
object by calling the IAudioClient::GetService method with parameter riid set to REFIID
IID_IAudioClockAdjustment. Adjusting the sample rate is not supported for exclusive
mode streams.

The IAudioClockAdjustment interface must be obtained from an audio client that is
initialized with both the AUDCLNT_STREAMFLAGS_RATEADJUST flag and the share
mode set to AUDCLNT_SHAREMODE_SHARED. If Initialize is called in an exclusive mode
with the AUDCLNT_STREAMFLAGS_RATEADJUST flag, Initialize fails with the
AUDCLNT_E_UNSUPPORTED_FORMAT error code.

When releasing an IAudioClockAdjustment interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

The IAudioClockAdjustment interface inherits from the IUnknown interface.
IAudioClockAdjustment also has these types of members:

The IAudioClockAdjustment interface has these methods.

 

IAudioClockAdjustment::SetSampleRate  

The SetSampleRate method sets the sample rate of a stream.

   

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audioclient.h

AUDCLNT_STREAMFLAGS_XXX Constants

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioClockAdjustment::SetSampleRate
method (audioclient.h)
Article10/13/2021

The SetSampleRate method sets the sample rate of a stream.

C++

[in] flSampleRate

The new sample rate in frames per second.

If the method succeeds, it returns S_OK.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

E_INVALIDARG The sample rate is out of the range for the Audio
Processing Object.

This method must not be called from a real-time processing thread.

The new sample rate will take effect after the current frame is done processing and will
remain in effect until SetSampleRate is called again. The audio client must be initialized
in shared-mode (AUDCLNT_SHAREMODE_SHARED), otherwise SetSampleRate fails.

Syntax

HRESULT SetSampleRate( 
  [in] float flSampleRate 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audioclient.h

AUDCLNT_STREAMFLAGS_XXX Constants

IAudioClockAdjustment

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclockadjustment


IAudioEffectsChangedNotificationClient
interface (audioclient.h)
Article02/16/2023

A callback interface allows applications to receive notifications when the list of audio
effects for the associated audio stream changes or when the resources needed to
enable an effect changes, i.e. when the value of the canSetState field of the associated
AUDIO_EFFECT changes.

The IAudioEffectsChangedNotificationClient interface inherits from the IUnknown
interface.

The IAudioEffectsChangedNotificationClient interface has these methods.

 

IAudioEffectsChangedNotificationClient::OnAudioEffectsChanged  

Called by the system when the list of audio effects changes or the resources needed to enable an
effect changes.

Register the callback interface by calling
IAudioEffectsManager::RegisterAudioEffectsChangedNotificationCallback.

   

Minimum supported client Windows Build 22000

Header audioclient.h

Inheritance

Methods

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDIO_EFFECT

IAudioEffectsManager::RegisterAudioEffectsChangedNotificationCallback

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

IAudioEffectsChangedNotificationClient:
:OnAudioEffectsChanged method
(audioclient.h)
Article10/07/2021

Called by the system when the list of audio effects changes or the resources needed to
enable an effect changes, i.e. when the value of the canSetState field of the associated
AUDIO_EFFECT changes.

C++

An HRESULT.

Register the callback interface by calling
IAudioEffectsManager::RegisterAudioEffectsChangedNotificationCallback.

   

Minimum supported client Windows Build 22000

Header audioclient.h

Syntax

HRESULT OnAudioEffectsChanged(); 

Return value

Remarks

Requirements

ﾂ Yes ﾄ No



Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IAudioEffectsManager interface
(audioclient.h)
Article02/16/2023

Provides management functionality for the audio effects pipeline for the associated
audio stream, allowing applications to get the current list of effects, set the state of
effects, and to register for notifications when the list of effects or effect states change.

The IAudioEffectsManager interface inherits from the IUnknown interface.

The IAudioEffectsManager interface has these methods.

 

IAudioEffectsManager::GetAudioEffects  

Gets the current list of audio effects for the associated audio stream.

IAudioEffectsManager::RegisterAudioEffectsChangedNotificationCallback  

Registers an AudioEffectsChangedNotificationClient interface.

IAudioEffectsManager::SetAudioEffectState  

The IAudioEffectsManager::SetAudioEffectState method (audioclient.h) sets the state of the
specified audio effect.

IAudioEffectsManager::UnregisterAudioEffectsChangedNotificationCallback  

Unregisters an IAudioEffectsChangedNotificationClient interface.

Get an instance of this interface by calling IAudioClient::GetService passing in the
interface pointer of the IAudioEffectsManager interface.

C++

Inheritance

Methods

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/audioclient/nf-audioclient-iaudioeffectsmanager-setaudioeffectstate


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header audioclient.h

wil::com_ptr_nothrow<IAudioEffectsManager> audioEffectsManager; 
RETURN_IF_FAILED(client->GetService(IID_PPV_ARGS(&audioEffectsManager))); 

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEffectsManager::GetAudioEffects
method (audioclient.h)
Article10/07/2021

Gets the current list of audio effects for the associated audio stream.

C++

effects

Receives a pointer to an array of AUDIO_EFFECT structures representing the current list
of audio effects.

numEffects

Receives the number of AUDIO_EFFECT structures returned in effects.

Returns an HRESULT including but not limited to the following.

Value Description

S_OK Success

AUDCLNT_E_DEVICE_INVALIDATED The associated audio stream has been destroyed.

The caller is responsible for freeing the array using CoTaskMemFree.

Syntax

HRESULT GetAudioEffects( 
  AUDIO_EFFECT **effects, 
  UINT32       *numEffects 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cotaskmemfree


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Register an IAudioEffectsChangedNotificationClient to receive notifications when the list
of audio effects changes.

   

Minimum supported client Windows Build 22000

Header audioclient.h

AUDIO_EFFECT IAudioEffectsChangedNotificationClient

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEffectsManager::RegisterAudioEff
ectsChangedNotificationCallback
method (audioclient.h)
Article10/07/2021

Registers an IAudioEffectsChangedNotificationClient interface. This callback interface
allows applications to receive notifications when the list of audio effects changes or the
resources needed to enable an effect changes, i.e. when the value of the canSetState
field of the associated AUDIO_EFFECT changes.

C++

client

The IAudioEffectsChangedNotificationClient interface to register.

Value Description

S_OK Success

AUDCLNT_E_DEVICE_INVALIDATED The associated audio stream has been destroyed.

Unregister the callback interface by calling
UnregisterAudioEffectsChangedNotificationCallback.

Syntax

HRESULT RegisterAudioEffectsChangedNotificationCallback( 
  IAudioEffectsChangedNotificationClient *client 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header audioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEffectsManager::UnregisterAudio
EffectsChangedNotificationCallback
method (audioclient.h)
Article10/07/2021

Unregisters an IAudioEffectsChangedNotificationClient interface.

C++

client

The IAudioEffectsChangedNotificationClient interface to unregister.

Value Description

S_OK Success

AUDCLNT_E_DEVICE_INVALIDATED The associated audio stream has been destroyed.

Register the callback interface by calling
RegisterAudioEffectsChangedNotificationCallback.

   

Syntax

HRESULT UnregisterAudioEffectsChangedNotificationCallback( 
  IAudioEffectsChangedNotificationClient *client 
); 

Parameters

Return value

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header audioclient.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioRenderClient interface
(audioclient.h)
Article07/22/2021

The IAudioRenderClient interface enables a client to write output data to a rendering
endpoint buffer. The client obtains a reference to the IAudioRenderClient interface of a
stream object by calling the IAudioClient::GetService method with parameter riid set to
REFIID IID_IAudioRenderClient.

The methods in this interface manage the movement of data packets that contain
audio-rendering data. The length of a data packet is expressed as the number of audio
frames in the packet. The size of an audio frame is specified by the nBlockAlign member
of the WAVEFORMATEX structure that the client obtains by calling the
IAudioClient::GetMixFormat method. The size in bytes of an audio frame equals the
number of channels in the stream multiplied by the sample size per channel. For
example, the frame size is four bytes for a stereo (2-channel) stream with 16-bit samples.
A packet always contains an integral number of audio frames.

When releasing an IAudioRenderClient interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

For code examples that use the IAudioRenderClient interface, see the following topics:

Rendering a Stream
Exclusive-Mode Streams

The IAudioRenderClient interface inherits from the IUnknown interface.
IAudioRenderClient also has these types of members:

The IAudioRenderClient interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioRenderClient::GetBuffer  

Retrieves a pointer to the next available space in the rendering endpoint buffer into which the
caller can write a data packet.

IAudioRenderClient::ReleaseBuffer  

The ReleaseBuffer method releases the buffer space acquired in the previous call to the
IAudioRenderClient::GetBuffer method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetMixFormat

IAudioClient::GetService

WASAPI

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioRenderClient::GetBuffer method
(audioclient.h)
Article10/13/2021

Retrieves a pointer to the next available space in the rendering endpoint buffer into
which the caller can write a data packet.

C++

[in] NumFramesRequested

The number of audio frames in the data packet that the caller plans to write to the
requested space in the buffer. If the call succeeds, the size of the buffer area pointed to
by *ppData matches the size specified in NumFramesRequested.

[out] ppData

Pointer to a pointer variable into which the method writes the starting address of the
buffer area into which the caller will write the data packet.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_BUFFER_ERROR GetBuffer failed to retrieve a data buffer and
*ppData points to NULL. For more information,
see Remarks.

AUDCLNT_E_BUFFER_TOO_LARGE The NumFramesRequested value exceeds the

Syntax

HRESULT GetBuffer( 
  [in]  UINT32 NumFramesRequested, 
  [out] BYTE   **ppData 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


available buffer space (buffer size minus padding
size).

AUDCLNT_E_BUFFER_SIZE_ERROR The stream is exclusive mode and uses event-
driven buffering, but the client attempted to get a
packet that was not the size of the buffer.

AUDCLNT_E_OUT_OF_ORDER A previous IAudioRenderClient::GetBuffer call is
still in effect.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged,
or the audio hardware or associated hardware
resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

AUDCLNT_E_BUFFER_OPERATION_PENDING Buffer cannot be accessed because a stream reset
is in progress.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter ppData is NULL.

The caller can request a packet size that is less than or equal to the amount of available
space in the buffer (except in the case of an exclusive-mode stream that uses event-
driven buffering; for more information, see IAudioClient::Initialize). The available space is
simply the buffer size minus the amount of data in the buffer that is already queued up
to be played. If the caller specifies a NumFramesRequested value that exceeds the
available space in the buffer, the call fails and returns error code
AUDCLNT_E_BUFFER_TOO_LARGE.

The client is responsible for writing a sufficient amount of data to the buffer to prevent
glitches from occurring in the audio stream. For more information about buffering
requirements, see IAudioClient::Initialize.

After obtaining a data packet by calling GetBuffer, the client fills the packet with
rendering data and issues the packet to the audio engine by calling the
IAudioRenderClient::ReleaseBuffer method.

The client must call ReleaseBuffer after a GetBuffer call that successfully obtains a
packet of any size other than 0. The client has the option of calling or not calling
ReleaseBuffer to release a packet of size 0.

For nonzero packet sizes, the client must alternate calls to GetBuffer and ReleaseBuffer.
Each GetBuffer call must be followed by a corresponding ReleaseBuffer call. After the

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer


client has called GetBuffer to acquire a data packet, the client cannot acquire the next
data packet until it has called ReleaseBuffer to release the previous packet. Two or more
consecutive calls either to GetBuffer or to ReleaseBuffer are not permitted and will fail
with error code AUDCLNT_E_OUT_OF_ORDER.

To ensure the correct ordering of calls, a GetBuffer call and its corresponding
ReleaseBuffer call must occur in the same thread.

The size of an audio frame is specified by the nBlockAlign member of the
WAVEFORMATEX structure that the client obtains by calling the
IAudioClient::GetMixFormat method.

If the caller sets NumFramesRequested = 0, the method returns status code S_OK but
does not write to the variable that the ppData parameter points to.

Clients should avoid excessive delays between the GetBuffer call that acquires a buffer
and the ReleaseBuffer call that releases the buffer. The implementation of the audio
engine assumes that the GetBuffer call and the corresponding ReleaseBuffer call occur
within the same buffer-processing period. Clients that delay releasing a buffer for more
than one period risk losing sample data.

In Windows 7, GetBuffer can return the AUDCLNT_E_BUFFER_ERROR error code for an
audio client that uses the endpoint buffer in the exclusive mode. This error indicates that
the data buffer was not retrieved because a data packet was not available (*ppData
received NULL).

If GetBuffer returns AUDCLNT_E_BUFFER_ERROR, the thread consuming the audio
samples must wait for the next processing pass. The client might benefit from keeping a
count of the failed GetBuffer calls. If GetBuffer returns this error repeatedly, the client
can start a new processing loop after shutting down the current client by calling
IAudioClient::Stop, IAudioClient::Reset, and releasing the audio client.

For code examples that call the GetBuffer method, see the following topics:

Rendering a Stream
Exclusive-Mode Streams

   

Examples

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getmixformat
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-reset
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient::GetBufferSize

IAudioClient::GetCurrentPadding

IAudioClient::Initialize

IAudioRenderClient Interface

IAudioRenderClient::ReleaseBuffer

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getbuffersize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiorenderclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-releasebuffer


IAudioRenderClient::ReleaseBuffer
method (audioclient.h)
Article10/13/2021

The ReleaseBuffer method releases the buffer space acquired in the previous call to the
IAudioRenderClient::GetBuffer method.

C++

[in] NumFramesWritten

The number of audio frames written by the client to the data packet. The value of this
parameter must be less than or equal to the size of the data packet, as specified in the
NumFramesRequested parameter passed to the IAudioRenderClient::GetBuffer method.

[in] dwFlags

The buffer-configuration flags. The caller can set this parameter either to 0 or to the
following _AUDCLNT_BUFFERFLAGS enumeration value (a flag bit):

AUDCLNT_BUFFERFLAGS_SILENT

If this flag bit is set, the audio engine treats the data packet as though it contains silence
regardless of the data values contained in the packet. This flag eliminates the need for
the client to explicitly write silence data to the rendering buffer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT ReleaseBuffer( 
  [in] UINT32 NumFramesWritten, 
  [in] DWORD  dwFlags 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


Return code Description

AUDCLNT_E_INVALID_SIZE The NumFramesWritten value exceeds the
NumFramesRequested value specified in the previous
IAudioRenderClient::GetBuffer call.

AUDCLNT_E_BUFFER_SIZE_ERROR The stream is exclusive mode and uses event-driven
buffering, but the client attempted to release a packet
that was not the size of the buffer.

AUDCLNT_E_OUT_OF_ORDER This call was not preceded by a corresponding call to
IAudioRenderClient::GetBuffer.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_INVALIDARG Parameter dwFlags is not a valid value.

The client must release the same number of frames that it requested in the preceding
call to the IAudioRenderClient::GetBuffer method. The single exception to this rule is
that the client can always call ReleaseBuffer to release 0 frames (unless the stream is
exclusive mode and uses event-driven buffering).

This behavior provides a convenient means for the client to "release" a previously
requested packet of length 0. In this case, the call to ReleaseBuffer is optional. After
calling GetBuffer to obtain a packet of length 0, the client has the option of not calling
ReleaseBuffer before calling GetBuffer again.

In addition, if the preceding GetBuffer call obtained a packet of nonzero size, calling
ReleaseBuffer with NumFramesRequested set to 0 will succeed (unless the stream is
exclusive mode and uses event-driven buffering). The meaning of the call is that the
client wrote no data to the packet before releasing it. Thus, the method treats the
portion of the buffer represented by the packet as unused and will make this portion of
the buffer available again to the client in the next GetBuffer call.

Clients should avoid excessive delays between the GetBuffer call that acquires a buffer
and the ReleaseBuffer call that releases the buffer. The implementation of the audio
engine assumes that the GetBuffer call and the corresponding ReleaseBuffer call occur
within the same buffer-processing period. Clients that delay releasing a buffer for more
than one period risk losing sample data.

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


Feedback

Was this page helpful?

Get help at Microsoft Q&A

For code examples that call the ReleaseBuffer method, see the following topics:

Rendering a Stream
Exclusive-Mode Streams

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient::Initialize

IAudioRenderClient Interface

IAudioRenderClient::GetBuffer

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/exclusive-mode-streams
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiorenderclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiorenderclient-getbuffer


IAudioStreamVolume interface
(audioclient.h)
Article07/22/2021

The IAudioStreamVolume interface enables a client to control and monitor the volume
levels for all of the channels in an audio stream. The client obtains a reference to the
IAudioStreamVolume interface on a stream object by calling the
IAudioClient::GetService method with parameter riid set to REFIID
IID_IAudioStreamVolume.

The effective volume level of any channel in the session submix, as heard at the
speakers, is the product of the following four volume-level factors:

The per-channel volume levels of the streams in the session, which clients can
control through the methods in the IAudioStreamVolume interface.
The per-channel volume level of the session, which clients can control through the
methods in the IChannelAudioVolume interface.
The master volume level of the session, which clients can control through the
methods in the ISimpleAudioVolume interface.
The policy-based volume level of the session, which the system dynamically
assigns to the session as the global mix changes.

Each of the four volume-level factors in the preceding list is a value in the range 0.0 to
1.0, where 0.0 indicates silence and 1.0 indicates full volume (no attenuation). The
effective volume level is also a value in the range 0.0 to 1.0.

When releasing an IAudioStreamVolume interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

The IAudioStreamVolume interface controls the channel volumes in a shared-mode
audio stream. This interface does not work with exclusive-mode streams. For
information about volume controls for exclusive-mode streams, see EndpointVolume
API.

The IAudioStreamVolume interface inherits from the IUnknown interface.
IAudioStreamVolume also has these types of members:

Inheritance

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


The IAudioStreamVolume interface has these methods.

 

IAudioStreamVolume::GetAllVolumes  

The GetAllVolumes method retrieves the volume levels for all the channels in the audio stream.

IAudioStreamVolume::GetChannelCount  

The GetChannelCount method retrieves the number of channels in the audio stream.

IAudioStreamVolume::GetChannelVolume  

The GetChannelVolume method retrieves the volume level for the specified channel in the audio
stream.

IAudioStreamVolume::SetAllVolumes  

The SetAllVolumes method sets the individual volume levels for all the channels in the audio
stream.

IAudioStreamVolume::SetChannelVolume  

The SetChannelVolume method sets the volume level for the specified channel in the audio
stream.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetService

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IChannelAudioVolume Interface

ISimpleAudioVolume Interface

WASAPI

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioStreamVolume::GetAllVolumes
method (audioclient.h)
Article10/13/2021

The GetAllVolumes method retrieves the volume levels for all the channels in the audio
stream.

C++

[in] dwCount

The number of elements in the pfVolumes array. The dwCount parameter must equal the
number of channels in the stream format. To get the number of channels, call the
IAudioStreamVolume::GetChannelCount method.

[out] pfVolumes

Pointer to an array of volume levels for the channels in the audio stream. This parameter
points to a caller-allocated float array into which the method writes the volume levels
for the individual channels. Volume levels are in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwCount does not equal the number of
channels in the stream.

E_POINTER Parameter pfVolumes is NULL.

Syntax

HRESULT GetAllVolumes( 
  [in]  UINT32 dwCount, 
  [out] float  *pfVolumes 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Clients can call the IAudioStreamVolume::SetAllVolumes or
IAudioStreamVolume::SetChannelVolume method to set the per-channel volume levels
in an audio stream.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioStreamVolume Interface

IAudioStreamVolume::GetChannelCount

IAudioStreamVolume::SetAllVolumes

IAudioStreamVolume::SetChannelVolume

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setchannelvolume


IAudioStreamVolume::GetChannelCount
method (audioclient.h)
Article10/13/2021

The GetChannelCount method retrieves the number of channels in the audio stream.

C++

[out] pdwCount

Pointer to a UINT32 variable into which the method writes the channel count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwCount is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Call this method to get the number of channels in the audio stream before calling any of
the other methods in the IAudioStreamVolume interface.

Syntax

HRESULT GetChannelCount( 
  [out] UINT32 *pdwCount 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioStreamVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume


IAudioStreamVolume::GetChannelVolum
e method (audioclient.h)
Article10/13/2021

The GetChannelVolume method retrieves the volume level for the specified channel in
the audio stream.

C++

[in] dwIndex

The channel number. If the stream format has N channels, then the channels are
numbered from 0 to N– 1. To get the number of channels, call the
IAudioStreamVolume::GetChannelCount method.

[out] pfLevel

Pointer to a float variable into which the method writes the volume level of the specified
channel. The volume level is in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwIndex is set to an invalid channel number.

E_POINTER Parameter pfLevel is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the

Syntax

HRESULT GetChannelVolume( 
  [in]  UINT32 dwIndex, 
  [out] float  *pfLevel 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Clients can call the IAudioStreamVolume::SetAllVolumes or
IAudioStreamVolume::SetChannelVolume method to set the per-channel volume levels
in an audio stream.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioStreamVolume Interface

IAudioStreamVolume::GetChannelCount

IAudioStreamVolume::SetAllVolumes

IAudioStreamVolume::SetChannelVolume

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-setchannelvolume


IAudioStreamVolume::SetAllVolumes
method (audioclient.h)
Article10/13/2021

The SetAllVolumes method sets the individual volume levels for all the channels in the
audio stream.

C++

[in] dwCount

The number of elements in the pfVolumes array. This parameter must equal the number
of channels in the stream format. To get the number of channels, call the
IAudioStreamVolume::GetChannelCount method.

[in] pfVolumes

Pointer to an array of volume levels for the channels in the audio stream. The number of
elements in the pfVolumes array is specified by the dwCount parameter. The caller writes
the volume level for each channel to the array element whose index matches the
channel number. If the stream format has N channels, the channels are numbered from
0 to N– 1. Valid volume levels are in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwCount does not equal the number of

Syntax

HRESULT SetAllVolumes( 
  [in] UINT32      dwCount, 
  [in] const float *pfVolumes 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

channels in the stream, or the value of a pfVolumes array
element is not in the range 0.0 to 1.0.

E_POINTER Parameter pfVolumes is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioStreamVolume Interface

IAudioStreamVolume::GetChannelCount

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


IAudioStreamVolume::SetChannelVolum
e method (audioclient.h)
Article10/13/2021

The SetChannelVolume method sets the volume level for the specified channel in the
audio stream.

C++

[in] dwIndex

The channel number. If the stream format has N channels, the channels are numbered
from 0 to N– 1. To get the number of channels, call the
IAudioStreamVolume::GetChannelCount method.

[in] fLevel

The volume level for the channel. Valid volume levels are in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwIndex is set to an invalid channel number,
or parameter fLevel is not in the range 0.0 to 1.0.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have

Syntax

HRESULT SetChannelVolume( 
  [in] UINT32      dwIndex, 
  [in] const float fLevel 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioStreamVolume Interface

IAudioStreamVolume::GetChannelCount

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudiostreamvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioViewManagerService interface
(audioclient.h)
Article02/16/2023

Provides APIs for associating an HWND with an audio stream.

The IAudioViewManagerService interface inherits from the IUnknown interface.

The IAudioViewManagerService interface has these methods.

 

IAudioViewManagerService::SetAudioStreamWindow  

Associates the specified HWND window handle with an audio stream.

Get an instance of the IAudioViewManagerService by calling GetService on an instance
of IAudioClient.

   

Header audioclient.h

Inheritance

Methods

Remarks

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types


IAudioViewManagerService::SetAudioStr
eamWindow method (audioclient.h)
Article05/24/2022

Associates the specified HWND window handle with an audio stream.

C++

hwnd

The HWND with which the audio stream wll be associated.

An app can choose to associate audio streams with a particular window of their app for
proper audio location representation in a Mixed Reality scenario

Get an instance of the IAudioViewManagerService by calling GetService on the
IAudioClient instance representing the stream you want to associate a window with. The
following code example illustrates creating an audio stream on the default audio render
endpoint and associating it with an HWND.

C++

Syntax

HRESULT SetAudioStreamWindow( 
  HWND hwnd 
); 

Parameters

Remarks

#include <audioclient.h> 

HRESULT CreateAudioStreamAndAttachToHwnd(_In_ HWND hwnd, _Out_ IAudioClient 
**audioStream) 
{ 

    wil::com_ptr_nothrow<IMMDeviceEnumerator> enumerator; 
    RETURN_IF_FAILED(CoCreateInstance(__uuidof(IMMDeviceEnumerator), 
    NULL, 
    CLSCTX_ALL, 

https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioclient.h

    IID_PPV_ARGS(&enumerator))); 
     
    wil::com_ptr_nothrow<IMMDevice> device; 
    RETURN_IF_FAILED(enumerator->GetDefaultAudioEndpoint(eRender, eConsole, 
&device)); 
     
    wil::com_ptr_nothrow<IAudioClient> audioClient; 
    RETURN_IF_FAILED(device->Activate(__uuidof(IAudioClient), 
    CLSCTX_ALL, 
    NULL, 
    (void**)&audioClient)); 
     
    wil::unique_cotaskmem_ptr<WAVEFORMATEX> wfx; 
    RETURN_IF_FAILED(audioClient-
>GetMixFormat(wil::out_param_ptr<WAVEFORMATEX**>(wfx))); 
     
    constexpr REFERENCE_TIME hnsRequestedDuration = 10000000; 
    RETURN_IF_FAILED(audioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, 
    0, 
    hnsRequestedDuration, 
    0, 
    wfx.get(), 
    NULL)); 
     
    wil::com_ptr_nothrow<IAudioViewManagerService> audioViewManagerService; 
    RETURN_IF_FAILED(audioClient-
>GetService(IID_PPV_ARGS(&audioViewManagerService))); 
    RETURN_IF_FAILED(audioViewManagerService->SetAudioStreamWindow(hwnd)); 
     
    *audioStream = spAudioClient.detach(); 
     
    return S_OK; 
} 

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IChannelAudioVolume interface
(audioclient.h)
Article07/22/2021

The IChannelAudioVolume interface enables a client to control and monitor the volume
levels for all of the channels in the audio session that the stream belongs to. This is the
session that the client assigned the stream to during the call to the
IAudioClient::Initialize method. The client obtains a reference to the
IChannelAudioVolume interface on a stream object by calling the
IAudioClient::GetService method with parameter riid set to REFIID
IID_IChannelAudioVolume.

The effective volume level of any channel in the session submix, as heard at the
speakers, is the product of the following four volume-level factors:

The per-channel volume levels of the streams in the session, which clients can
control through the methods in the IAudioStreamVolume interface.
The per-channel volume level of the session, which clients can control through the
methods in the IChannelAudioVolume interface.
The master volume level of the session, which clients can control through the
methods in the ISimpleAudioVolume interface.
The policy-based volume level of the session, which the system dynamically
assigns to the session as the global mix changes.

Each of the four volume-level factors in the preceding list is a value in the range 0.0 to
1.0, where 0.0 indicates silence and 1.0 indicates full volume (no attenuation). The
effective volume level is also a value in the range 0.0 to 1.0.

Typical audio applications do not modify the volume levels of sessions. Instead, they rely
on users to set these volume levels through the Sndvol program. Sndvol modifies only
the master volume levels of sessions. By default, the session manager sets the per-
channel volume levels to 1.0 at the initial activation of a session. Subsequent per-
channel volume changes by clients are persistent across computer restarts.

When releasing an IChannelAudioVolume interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

The IChannelAudioVolume interface controls the channel volumes in an audio session.
An audio session is a collection of shared-mode streams. This interface does not work

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


with exclusive-mode streams. For information about volume controls for exclusive-mode
streams, see EndpointVolume API.

The IChannelAudioVolume interface inherits from the IUnknown interface.
IChannelAudioVolume also has these types of members:

The IChannelAudioVolume interface has these methods.

 

IChannelAudioVolume::GetAllVolumes  

The GetAllVolumes method retrieves the volume levels for all the channels in the audio session.

IChannelAudioVolume::GetChannelCount  

The GetChannelCount method retrieves the number of channels in the stream format for the
audio session.

IChannelAudioVolume::GetChannelVolume  

The GetChannelVolume method retrieves the volume level for the specified channel in the audio
session.

IChannelAudioVolume::SetAllVolumes  

The SetAllVolumes method sets the individual volume levels for all the channels in the audio
session.

IChannelAudioVolume::SetChannelVolume  

The SetChannelVolume method sets the volume level for the specified channel in the audio
session.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioclient.h

Core Audio Interfaces

IAudioClient::GetService

IAudioClient::Initialize

IAudioStreamVolume Interface

ISimpleAudioVolume Interface

WASAPI

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IChannelAudioVolume::GetAllVolumes
method (audioclient.h)
Article10/13/2021

The GetAllVolumes method retrieves the volume levels for all the channels in the audio
session.

C++

[in] dwCount

The number of elements in the pfVolumes array. The dwCount parameter must equal the
number of channels in the stream format for the audio session. To get the number of
channels, call the IChannelAudioVolume::GetChannelCount method.

[out] pfVolumes

Pointer to an array of volume levels for the channels in the audio session. This parameter
points to a caller-allocated float array into which the method writes the volume levels
for the individual channels. Volume levels are in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwCount does not equal the number of
channels in the stream format for the audio session.

E_POINTER Parameter pfVolumes is NULL.

Syntax

HRESULT GetAllVolumes( 
  [in]  UINT32 dwCount, 
  [out] float  *pfVolumes 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Clients can call the IChannelAudioVolume::SetAllVolumes or
IChannelAudioVolume::SetChannelVolume method to set the per-channel volume levels
in an audio session.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IChannelAudioVolume Interface

IChannelAudioVolume::GetChannelCount

IChannelAudioVolume::SetAllVolumes

IChannelAudioVolume::SetChannelVolume

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume


IChannelAudioVolume::GetChannelCoun
t method (audioclient.h)
Article10/13/2021

The GetChannelCount method retrieves the number of channels in the stream format
for the audio session.

C++

[out] pdwCount

Pointer to a UINT32 variable into which the method writes the channel count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwCount is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetChannelCount( 
  [out] UINT32 *pdwCount 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Call this method to get the number of channels in the audio session before calling any
of the other methods in the IChannelAudioVolume interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IChannelAudioVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume


IChannelAudioVolume::GetChannelVolu
me method (audioclient.h)
Article10/13/2021

The GetChannelVolume method retrieves the volume level for the specified channel in
the audio session.

C++

[in] dwIndex

The channel number. If the stream format for the audio session has N channels, then the
channels are numbered from 0 to N– 1. To get the number of channels, call the
IChannelAudioVolume::GetChannelCount method.

[out] pfLevel

Pointer to a float variable into which the method writes the volume level of the specified
channel. The volume level is in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwIndex is set to an invalid channel number.

E_POINTER Parameter pfLevel is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the

Syntax

HRESULT GetChannelVolume( 
  [in]  UINT32 dwIndex, 
  [out] float  *pfLevel 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Clients can call the IChannelAudioVolume::SetAllVolumes or
IChannelAudioVolume::SetChannelVolume method to set the per-channel volume levels
in an audio session.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IChannelAudioVolume Interface

IChannelAudioVolume::GetChannelCount

IChannelAudioVolume::SetAllVolumes

IChannelAudioVolume::SetChannelVolume

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume


IChannelAudioVolume::SetAllVolumes
method (audioclient.h)
Article10/13/2021

The SetAllVolumes method sets the individual volume levels for all the channels in the
audio session.

C++

[in] dwCount

The number of elements in the pfVolumes array. This parameter must equal the number
of channels in the stream format for the audio session. To get the number of channels,
call the IChannelAudioVolume::GetChannelCount method.

[in] pfVolumes

Pointer to an array of volume levels for the channels in the audio session. The number of
elements in the pfVolumes array is specified by the dwCount parameter. The caller writes
the volume level for each channel to the array element whose index matches the
channel number. If the stream format for the audio session has N channels, the channels
are numbered from 0 to N– 1. Valid volume levels are in the range 0.0 to 1.0.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a channel-volume-
change event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting

Syntax

HRESULT SetAllVolumes( 
  [in] UINT32      dwCount, 
  [in] const float *pfVolumes, 
  [in] LPCGUID     EventContext 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwCount does not equal the number of
channels in the stream format for the audio session, or
the value of a pfVolumes array element is not in the
range 0.0 to 1.0.

E_POINTER Parameter pfVolumes is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method, if it succeeds, generates a channel-volume-change event regardless of
whether any of the new channel volume levels differ in value from the previous channel
volume levels.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

Return value

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionEvents Interface

IChannelAudioVolume Interface

IChannelAudioVolume::GetChannelCount

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount


IChannelAudioVolume::SetChannelVolu
me method (audioclient.h)
Article10/13/2021

The SetChannelVolume method sets the volume level for the specified channel in the
audio session.

C++

[in] dwIndex

The channel number. If the stream format for the audio session has N channels, the
channels are numbered from 0 to N– 1. To get the number of channels, call the
IChannelAudioVolume::GetChannelCount method.

[in] fLevel

The volume level for the channel. Valid volume levels are in the range 0.0 to 1.0.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a channel-volume-
change event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

Syntax

HRESULT SetChannelVolume( 
  [in] UINT32      dwIndex, 
  [in] const float fLevel, 
  [in] LPCGUID     EventContext 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter dwIndex is set to an invalid channel number,
or parameter fLevel is not in the range 0.0 to 1.0.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method, if it succeeds, generates a channel-volume-change event regardless of
whether the new channel volume level differs in value from the previous channel volume
level.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioclient.h

IAudioSessionEvents Interface

IChannelAudioVolume Interface

IChannelAudioVolume::GetChannelCount

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISimpleAudioVolume interface
(audioclient.h)
Article07/22/2021

The ISimpleAudioVolume interface enables a client to control the master volume level
of an audio session. The IAudioClient::Initialize method initializes a stream object and
assigns the stream to an audio session. The client obtains a reference to the
ISimpleAudioVolume interface on a stream object by calling the
IAudioClient::GetService method with parameter riid set to REFIID
IID_ISimpleAudioVolume.

Alternatively, a client can obtain the ISimpleAudioVolume interface of an existing
session without having to first create a stream object and add the stream to the session.
Instead, the client calls the IAudioSessionManager::GetSimpleAudioVolume method with
the session GUID.

The effective volume level of any channel in the session submix, as heard at the
speakers, is the product of the following four volume-level factors:

The per-channel volume levels of the streams in the session, which clients can
control through the methods in the IAudioStreamVolume interface.
The master volume level of the session, which clients can control through the
methods in the ISimpleAudioVolume interface.
The per-channel volume level of the session, which clients can control through the
methods in the IChannelAudioVolume interface.
The policy-based volume level of the session, which the system dynamically
assigns to the session as the global mix changes.

Each of the four volume-level factors in the preceding list is a value in the range 0.0 to
1.0, where 0.0 indicates silence and 1.0 indicates full volume (no attenuation). The
effective volume level is also a value in the range 0.0 to 1.0.

Typical audio applications do not modify the volume levels of sessions. Instead, they rely
on users to set these volume levels through the Sndvol program. Sndvol modifies only
the master volume levels of sessions. By default, the session manager sets the master
volume level to 1.0 at the initial activation of a session. Subsequent volume changes by
Sndvol or other clients are persistent across computer restarts.

When releasing an ISimpleAudioVolume interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager-getsimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume


The ISimpleAudioVolume interface controls the volume of an audio session. An audio
session is a collection of shared-mode streams. This interface does not work with
exclusive-mode streams. For information about volume controls for exclusive-mode
streams, see EndpointVolume API.

The ISimpleAudioVolume interface inherits from the IUnknown interface.
ISimpleAudioVolume also has these types of members:

The ISimpleAudioVolume interface has these methods.

 

ISimpleAudioVolume::GetMasterVolume  

The GetMasterVolume method retrieves the client volume level for the audio session.

ISimpleAudioVolume::GetMute  

The GetMute method retrieves the current muting state for the audio session.

ISimpleAudioVolume::SetMasterVolume  

The SetMasterVolume method sets the master volume level for the audio session.

ISimpleAudioVolume::SetMute 

The SetMute method sets the muting state for the audio session.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

IAudioClient::GetService

IAudioClient::Initialize

IAudioStreamVolume Interface

IChannelAudioVolume Interface

WASAPI

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


ISimpleAudioVolume::GetMasterVolume
method (audioclient.h)
Article10/13/2021

The GetMasterVolume method retrieves the client volume level for the audio session.

C++

[out] pfLevel

Pointer to a float variable into which the method writes the client volume level. The
volume level is a value in the range 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfLevel is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetMasterVolume( 
  [out] float *pfLevel 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

This method retrieves the client volume level for the session. This is the volume level
that the client set in a previous call to the ISimpleAudioVolume::SetMasterVolume
method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioClient::Initialize

ISimpleAudioVolume Interface

ISimpleAudioVolume::SetMasterVolume

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume


ISimpleAudioVolume::GetMute method
(audioclient.h)
Article10/13/2021

The GetMute method retrieves the current muting state for the audio session.

C++

[out] pbMute

Pointer to a BOOL variable into which the method writes the muting state. TRUE
indicates that muting is enabled. FALSE indicates that it is disabled.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pbMute is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetMute( 
  [out] BOOL *pbMute 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IChannelAudioVolume Interface

ISimpleAudioVolume Interface

ISimpleAudioVolume::SetMute

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmute


ISimpleAudioVolume::SetMasterVolume
method (audioclient.h)
Article10/13/2021

The SetMasterVolume method sets the master volume level for the audio session.

C++

[in] fLevel

The new master volume level. Valid volume levels are in the range 0.0 to 1.0.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a volume-change
event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

Syntax

HRESULT SetMasterVolume( 
  [in] float   fLevel, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_INVALIDARG Parameter fLevel is not in the range 0.0 to 1.0.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method generates a volume-change event only if the method call changes the
volume level of the session. For example, if the volume level is 0.4 when the call occurs,
and the call sets the volume level to 0.4, no event is generated.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioSessionEvents Interface

ISimpleAudioVolume Interface

ISimpleAudioVolume::GetMasterVolume

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-getmastervolume


ISimpleAudioVolume::SetMute method
(audioclient.h)
Article10/13/2021

The SetMute method sets the muting state for the audio session.

C++

[in] bMute

The new muting state. TRUE enables muting. FALSE disables muting.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a volume-change
event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

Syntax

HRESULT SetMute( 
  [in] const BOOL bMute, 
  [in] LPCGUID    EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method generates a volume-change event only if the method call changes the
muting state of the session from disabled to enabled, or from enabled to disabled. For
example, if muting is enabled when the call occurs, and the call enables muting, no
event is generated.

This method applies the same muting state to all channels in the audio session. The
endpoint device always applies muting uniformly across all the channels in the session.
There are no IChannelAudioVolume methods for setting the muting states of individual
channels.

The client can get the muting state of the audio session by calling the
SimpleAudioVolume::GetMute method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audioclient.h

IAudioSessionEvents Interface

IChannelAudioVolume Interface

ISimpleAudioVolume Interface

ISimpleAudioVolume::GetMute

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-getmute
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-getmute


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

Get help at Microsoft Q&A

audioclientactivationparams.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

audioclientactivationparams.h contains the following programming interfaces:

 

AUDIOCLIENT_ACTIVATION_PARAMS  

Specifies the activation parameters for a call to ActivateAudioInterfaceAsync.

AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS  

Specifies parameters for a call to ActivateAudioInterfaceAsync where loopback activation is
requested.

 

AUDIOCLIENT_ACTIVATION_TYPE  

Specifies the activation type for an AUDIOCLIENT_ACTIVATION_PARAMS structure passed into a
call to ActivateAudioInterfaceAsync.

PROCESS_LOOPBACK_MODE  

Specifies the loopback mode for an AUDIOCLIENT_ACTIVATION_PARAMS structure passed into a
call to ActivateAudioInterfaceAsync.

Structures

Enumerations

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDIOCLIENT_ACTIVATION_PARAMS
structure
(audioclientactivationparams.h)
Article10/05/2021

Specifies the activation parameters for a call to ActivateAudioInterfaceAsync.

C++

ActivationType

A member of the AUDIOCLIENT_ACTIVATION_TYPE specifying the type of audio
interface activation. Currently default activation and loopback activation are supported.

DUMMYUNIONNAME

DUMMYUNIONNAME.ProcessLoopbackParams

A AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS specifying the loopback parameters for
the audio interface activation.

   

Minimum supported client Windows 10 Build 20348

Header audioclientactivationparams.h

Syntax

typedef struct AUDIOCLIENT_ACTIVATION_PARAMS { 
  AUDIOCLIENT_ACTIVATION_TYPE ActivationType; 
  union { 
    AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS ProcessLoopbackParams; 
  } DUMMYUNIONNAME; 
} AUDIOCLIENT_ACTIVATION_PARAMS; 

Members

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDIOCLIENT_ACTIVATION_TYPE

ActivateAudioInterfaceAsync

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDIOCLIENT_ACTIVATION_TYPE
enumeration
(audioclientactivationparams.h)
Article10/05/2021

Specifies the activation type for an AUDIOCLIENT_ACTIVATION_PARAMS structure
passed into a call to ActivateAudioInterfaceAsync.

C++

 

AUDIOCLIENT_ACTIVATION_TYPE_DEFAULT  
Default activation.

AUDIOCLIENT_ACTIVATION_TYPE_PROCESS_LOOPBACK  
Process loopback activation, allowing for the inclusion or exclusion of audio rendered by the
specified process and its child processes. For sample code that demonstrates the process
loopback capture scenario, see the Application Loopback API Capture Sample.

   

Minimum supported client Windows 10 Build 20348

Header audioclientactivationparams.h

Syntax

typedef enum AUDIOCLIENT_ACTIVATION_TYPE { 
  AUDIOCLIENT_ACTIVATION_TYPE_DEFAULT, 
  AUDIOCLIENT_ACTIVATION_TYPE_PROCESS_LOOPBACK 
} ; 

Constants

Requirements

See also

https://learn.microsoft.com/en-us/samples/microsoft/windows-classic-samples/applicationloopbackaudio-sample/


Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDIOCLIENT_ACTIVATION_PARAMS

ActivateAudioInterfaceAsync

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDIOCLIENT_PROCESS_LOOPBACK_PA
RAMS structure
(audioclientactivationparams.h)
Article10/05/2021

Specifies parameters for a call to ActivateAudioInterfaceAsync where loopback
activation is requested.

C++

TargetProcessId

The ID of the process for which the render streams, and the render streams of its child
processes, will be included or excluded when activating the process loopback stream.

ProcessLoopbackMode

A value from the PROCESS_LOOPBACK_MODE enumeration specifying whether the
render streams for the process and child processes specified in the TargetProcessId field
should be included or excluded when activating the audio interface. For sample code
that demonstrates the process loopback capture scenario, see the Application Loopback
API Capture Sample.

   

Minimum supported client Windows 10 Build 20348

Header audioclientactivationparams.h

Syntax

typedef struct AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS { 
  DWORD                 TargetProcessId; 
  PROCESS_LOOPBACK_MODE ProcessLoopbackMode; 
} AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS; 

Members

Requirements

https://learn.microsoft.com/en-us/samples/microsoft/windows-classic-samples/applicationloopbackaudio-sample/


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


PROCESS_LOOPBACK_MODE
enumeration
(audioclientactivationparams.h)
Article10/05/2021

Specifies the loopback mode for an AUDIOCLIENT_ACTIVATION_PARAMS structure
passed into a call to ActivateAudioInterfaceAsync.

C++

 

PROCESS_LOOPBACK_MODE_INCLUDE_TARGET_PROCESS_TREE  
Render streams from the specified process and its child processes are included in the activated
process loopback stream.

PROCESS_LOOPBACK_MODE_EXCLUDE_TARGET_PROCESS_TREE  
Render streams from the specified process and its child processes are excluded from the activated
process loopback stream.

   

Minimum supported client Windows 10 Build 20348

Header audioclientactivationparams.h

Syntax

typedef enum PROCESS_LOOPBACK_MODE { 
  PROCESS_LOOPBACK_MODE_INCLUDE_TARGET_PROCESS_TREE, 
  PROCESS_LOOPBACK_MODE_EXCLUDE_TARGET_PROCESS_TREE 
} ; 

Constants

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDIOCLIENT_ACTIVATION_PARAMS ActivateAudioInterfaceAsync

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

Get help at Microsoft Q&A

audioendpoints.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

audioendpoints.h contains the following programming interfaces:

 

IAudioEndpointFormatControl  

Used for resetting the current audio endpoint device format.

Interfaces

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointFormatControl interface
(audioendpoints.h)
Article07/22/2021

Used for resetting the current audio endpoint device format.

The IAudioEndpointFormatControl interface inherits from the IUnknown interface.
IAudioEndpointFormatControl also has these types of members:

The IAudioEndpointFormatControl interface has these methods.

 

IAudioEndpointFormatControl::ResetToDefault  

Resets the format to the default setting provided by the device manufacturer.

This setting is exposed to the user through the "Sounds" control panel and can be read
from the endpoint property store using PKEY_AudioEngine_DeviceFormat.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioendpoints.h

Inheritance

Methods

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/pkey-audioengine-deviceformat


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioEndpointFormatControl::ResetTo
Default method (audioendpoints.h)
Article10/13/2021

Resets the format to the default setting provided by the device manufacturer.

C++

[in] ResetFlags

Allows the application to specify which formats are reset. If no flags are set, then this
method reevaluates both the endpoint's device format and mix format and sets them to
their default values.

ENDPOINT_FORMAT_RESET_MIX_ONLY: Only reset the mix format. The endpoint's
device format will not be reset if this flag is set.

If this method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audioendpoints.h

Syntax

HRESULT ResetToDefault( 
  [in] DWORD ResetFlags 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointFormatControl

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioendpoints/nn-audioendpoints-iaudioendpointformatcontrol


audioenginebaseapo.h header
Article08/10/2023

This header is used by multiple technologies. For more information, see:

Audio Devices DDI Reference
Core Audio APIs

audioenginebaseapo.h contains the following programming interfaces:

 

IApoAcousticEchoCancellation

This interface is implemented by APOs to enable acoustic echo cancellation (AEC) scenarios.

IApoAcousticEchoCancellation2

Extends IAcousticEchoCancellation to allow APOs to specify desired properties of the reference
stream.

IApoAuxiliaryInputConfiguration

Provides methods that APOs can implement so that the audio engine can add and remove
auxiliary input streams.

IApoAuxiliaryInputRT

The realtime-safe interface used to drive the auxiliary inputs of an APO.

IAudioDeviceModulesClient

Audio Processing Objects (APOs) implement this interface to obtain a reference to an
IAudioDeviceModulesManager instance.

IAudioProcessingObject

System Effects Audio Processing Objects (sAPOs) are typically used in or called from real-time
process threads.

IAudioProcessingObjectConfiguration

The IAudioProcessingObjectConfiguration interface is used to configure the APO. This interface
uses its methods to lock and unlock the APO for processing.

Interfaces

https://learn.microsoft.com/en-us/windows/win32/api/_audio/
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iapoacousticechocancellation
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iapoacousticechocancellation2
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iapoauxiliaryinputconfiguration
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iapoauxiliaryinputrt
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudiodevicemodulesclient
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudioprocessingobject
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudioprocessingobjectconfiguration


 

IAudioProcessingObjectRT

This interface can operate in real-time mode and its methods can be called form real-time
processing threads.

IAudioSystemEffects

The IAudioSystemEffects interface uses the basic methods that are inherited from IUnknown, and
must implement an Initialize method.

IAudioSystemEffects2

The IAudioSystemEffects2 interface was introduced with Windows 8.1 for retrieving information
about the processing objects in a given mode.

IAudioSystemEffectsCustomFormats

The IAudioSystemEffectsCustomFormats interface is supported in Windows Vista and later
versions of Windows.

 

APO_REG_PROPERTIES

The APO_REG_PROPERTIES structure is used by IAudioProcessingObject::GetRegistrationProperties
for returning the registration properties of an audio processing object (APO).

APOInitBaseStruct

The APOInitBaseStruct structure is the base initialization header that must precede other
initialization data in IAudioProcessingObject::Initialize.

APOInitSystemEffects

The APOInitSystemEffects structure gets passed to the system effects APO for initialization.

APOInitSystemEffects2

The APOInitSystemEffects2 structure was introduced with Windows 8.1, to make it possible to
provide additional initialization context to the audio processing object (APO) for initialization.

Structures

Enumerations

https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudioprocessingobjectrt
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudiosystemeffects
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudiosystemeffects2
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/nn-audioenginebaseapo-iaudiosystemeffectscustomformats
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ns-audioenginebaseapo-apo_reg_properties
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ns-audioenginebaseapo-apoinitbasestruct
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ns-audioenginebaseapo-apoinitsystemeffects
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ns-audioenginebaseapo-apoinitsystemeffects2


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

APO_FLAG

The APO_FLAG enumeration defines constants that are used as flags by an audio processing
object (APO).

APO_REFERENCE_STREAM_PROPERTIES

Specifies loopback stream properties for the
IApoAcousticEchoCancellation2::GetDesiredReferenceStreamProperties callback method.

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ne-audioenginebaseapo-apo_flag
https://learn.microsoft.com/en-us/windows/win32/api/audioenginebaseapo/ne-audioenginebaseapo-apo_reference_stream_properties


audioengineendpoint.h header
Article01/24/2023

This header is used by multiple technologies. For more information, see:

Core Audio APIs
Remote Desktop Services

audioengineendpoint.h contains the following programming interfaces:

 

IAudioDeviceEndpoint  

Initializes a device endpoint object and gets the capabilities of the device that it represents.

IAudioEndpoint  

Provides information to the audio engine about an audio endpoint. This interface is implemented
by an audio endpoint.

IAudioEndpointControl  

Controls the stream state of an endpoint.

IAudioEndpointLastBufferControl  

Provides functionality to allow an offload stream client to notify the endpoint that the last buffer
has been sent only partially filled.

IAudioEndpointOffloadStreamMeter  

The IAudioEndpointOffloadStreamMeter interface retrieves general information about the audio
channels in the offloaded audio stream.

IAudioEndpointOffloadStreamMute  

The IAudioEndpointOffloadStreamMute interface allows a client to manipulate the mute status of
the offloaded audio stream.

IAudioEndpointOffloadStreamVolume  

The IAudioEndpointOffloadStreamVolume interface allows the client application to manipulate the
volume level of the offloaded audio stream.

Interfaces

https://learn.microsoft.com/en-us/windows/win32/api/_termserv/
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudiodeviceendpoint
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpoint
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointcontrol


Feedback

 

IAudioEndpointRT  

Gets the difference between the current read and write positions in the endpoint buffer.

IAudioInputEndpointRT  

Gets the input buffer for each processing pass.

IAudioLfxControl  

The IAudioLfxControl interface allows the client to apply or remove local effects from the
offloaded audio stream.

IAudioOutputEndpointRT  

Gets the output buffer for each processing pass.

IHardwareAudioEngineBase  

The IHardwareAudioEngineBase interface is implemented by audio endpoints for the audio stack
to use to configure and retrieve information about the hardware audio engine.

 

AE_CURRENT_POSITION  

Reports the current frame position from the device to the clients.

 

AE_POSITION_FLAGS  

Defines constants for the AE_CURRENT_POSITION structure. These constants describe the degree
of validity of the current position.

Structures

Enumerations

ﾂ ﾄ

https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointrt
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudioinputendpointrt
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/nn-audioengineendpoint-iaudiooutputendpointrt
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/ns-audioengineendpoint-ae_current_position
https://learn.microsoft.com/en-us/windows/win32/api/audioengineendpoint/ne-audioengineendpoint-ae_position_flags


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointLastBufferControl
interface (audioengineendpoint.h)
Article07/22/2021

Provides functionality to allow an offload stream client to notify the endpoint that the
last buffer has been sent only partially filled.

The IAudioEndpointLastBufferControl interface inherits from the IUnknown interface.
IAudioEndpointLastBufferControl also has these types of members:

The IAudioEndpointLastBufferControl interface has these methods.

 

IAudioEndpointLastBufferControl::IsLastBufferControlSupported  

Indicates if last buffer control is supported.

IAudioEndpointLastBufferControl::ReleaseOutputDataPointerForLastBuffer  

Releases the output data pointer for the last buffer.

This is an optional interface on an endpoint.

   

Minimum supported client Windows 8.1 [desktop apps only]

Minimum supported server Windows Server 2012 R2 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Inheritance

Methods

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


Feedback

Was this page helpful?

IAudioEndpointLastBufferControl::IsLast
BufferControlSupported method
(audioengineendpoint.h)
Article06/29/2021

Indicates if last buffer control is supported.

C++

true if last buffer control is supported; otherwise, false.

   

Minimum supported client Windows 8.1 [desktop apps only]

Minimum supported server Windows Server 2012 R2 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

IAudioEndpointLastBufferControl

Syntax

BOOL IsLastBufferControlSupported(); 

Return value

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointlastbuffercontrol


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IAudioEndpointLastBufferControl::Relea
seOutputDataPointerForLastBuffer
method (audioengineendpoint.h)
Article10/13/2021

Releases the output data pointer for the last buffer.

C++

[in] pConnectionProperty

The APO connection property.

None

   

Minimum supported client Windows 8.1 [desktop apps only]

Minimum supported server Windows Server 2012 R2 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Syntax

void ReleaseOutputDataPointerForLastBuffer( 
  [in] const APO_CONNECTION_PROPERTY *pConnectionProperty 
); 

Parameters

Return value

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointLastBufferControl

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointlastbuffercontrol


IAudioEndpointOffloadStreamMeter
interface (audioengineendpoint.h)
Article07/22/2021

The IAudioEndpointOffloadStreamMeter interface retrieves general information about
the audio channels in the offloaded audio stream.

The IAudioEndpointOffloadStreamMeter interface inherits from the IUnknown
interface. IAudioEndpointOffloadStreamMeter also has these types of members:

The IAudioEndpointOffloadStreamMeter interface has these methods.

 

IAudioEndpointOffloadStreamMeter::GetMeterChannelCount  

Gets the number of available audio channels in the offloaded stream that can be metered.

IAudioEndpointOffloadStreamMeter::GetMeteringData  

The GetMeteringData method retrieves general information about the available audio channels in
the offloaded stream.

   

Target Platform Windows

Header audioengineendpoint.h

Core Audio Interfaces

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointOffloadStreamMeter::Ge
tMeterChannelCount method
(audioengineendpoint.h)
Article10/13/2021

Gets the number of available audio channels in the offloaded stream that can be
metered.

C++

[out] pu32ChannelCount

A Pointer to a variable that indicates the number of available audio channels in the
offloaded stream that can be metered.

The GetMeterChannelCount method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT GetMeterChannelCount( 
  [out] UINT32 *pu32ChannelCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointOffloadStreamMeter

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreammeter


IAudioEndpointOffloadStreamMeter::Ge
tMeteringData method
(audioengineendpoint.h)
Article10/13/2021

The GetMeteringData method retrieves general information about the available audio
channels in the offloaded stream.

C++

[in] u32ChannelCount

Indicates the number of available audio channels in the offloaded audio stream.

[out] pf32PeakValues

A pointer to the peak values for the audio channels in the offloaded audio stream.

The GetMeteringData method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Syntax

HRESULT GetMeteringData( 
  [in]  UINT32  u32ChannelCount, 
  [out] FLOAT32 *pf32PeakValues 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioengineendpoint.h

IAudioEndpointOffloadStreamMeter

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreammeter


IAudioEndpointOffloadStreamMute
interface (audioengineendpoint.h)
Article07/22/2021

The IAudioEndpointOffloadStreamMute interface allows a client to manipulate the
mute status of the offloaded audio stream.

The IAudioEndpointOffloadStreamMute interface inherits from the IUnknown interface.
IAudioEndpointOffloadStreamMute also has these types of members:

The IAudioEndpointOffloadStreamMute interface has these methods.

 

IAudioEndpointOffloadStreamMute::GetMute  

The GetMute method retrieves the mute status of the offloaded audio stream.

IAudioEndpointOffloadStreamMute::SetMute  

The SetMute method sets the mute status of the offloaded audio stream.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Core Audio Interfaces

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointOffloadStreamMute::Get
Mute method (audioengineendpoint.h)
Article10/13/2021

The GetMute method retrieves the mute status of the offloaded audio stream.

C++

[out] pbMuted

Indicates whether or not the offloaded audio stream is muted. A value of TRUE indicates
that the stream is muted, and a value of FALSE indicates that the stream is not muted.

The GetMute method returns S_OK to indicate that it has completed successfully.
Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT GetMute( 
  [out] boolean *pbMuted 
); 

Parameters

Return value

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointOffloadStreamMute

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreammute


IAudioEndpointOffloadStreamMute::Set
Mute method (audioengineendpoint.h)
Article10/13/2021

The SetMute method sets the mute status of the offloaded audio stream.

C++

[in] bMuted

Indicates whether or not the offloaded audio stream is to be muted. A value of TRUE
mutes the stream, and a value of FALSE sets the stream to a non-muted state.

The SetMute method returns S_OK to indicate that it has completed successfully.
Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT SetMute( 
  [in] boolean bMuted 
); 

Parameters

Return value

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointOffloadStreamMute

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreammute


IAudioEndpointOffloadStreamVolume
interface (audioengineendpoint.h)
Article07/22/2021

The IAudioEndpointOffloadStreamVolume interface allows the client application to
manipulate the volume level of the offloaded audio stream.

The IAudioEndpointOffloadStreamVolume interface inherits from the IUnknown
interface. IAudioEndpointOffloadStreamVolume also has these types of members:

The IAudioEndpointOffloadStreamVolume interface has these methods.

 

IAudioEndpointOffloadStreamVolume::GetChannelVolumes  

The GetChannelVolumes method retrieves the volume levels for the various audio channels in the
offloaded stream.

IAudioEndpointOffloadStreamVolume::GetVolumeChannelCount  

The GetVolumeChannelCount method retrieves the number of available audio channels in the
offloaded stream.

IAudioEndpointOffloadStreamVolume::SetChannelVolumes  

The SetChannelVolumes method sets the volume levels for the various audio channels in the
offloaded stream.

   

Target Platform Windows

Header audioengineendpoint.h

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioEndpointOffloadStreamVolume::G
etChannelVolumes method
(audioengineendpoint.h)
Article10/13/2021

The GetChannelVolumes method retrieves the volume levels for the various audio
channels in the offloaded stream.

C++

[in] u32ChannelCount

Indicates the number of available audio channels in the offloaded stream.

[out] pf32Volumes

A pointer to the volume levels for the various audio channels in the offloaded stream.

The GetChannelVolumes method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Syntax

HRESULT GetChannelVolumes( 
  [in]  UINT32  u32ChannelCount, 
  [out] FLOAT32 *pf32Volumes 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioengineendpoint.h

IAudioEndpointOffloadStreamVolume

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreamvolume


IAudioEndpointOffloadStreamVolume::G
etVolumeChannelCount method
(audioengineendpoint.h)
Article10/13/2021

The GetVolumeChannelCount method retrieves the number of available audio channels
in the offloaded stream.

C++

[out] pu32ChannelCount

A pointer to the number of available audio channels in the offloaded stream.

The GetVolumeChannelCount method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT GetVolumeChannelCount( 
  [out] UINT32 *pu32ChannelCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointOffloadStreamVolume

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreamvolume


IAudioEndpointOffloadStreamVolume::S
etChannelVolumes method
(audioengineendpoint.h)
Article10/13/2021

The SetChannelVolumes method sets the volume levels for the various audio channels
in the offloaded stream.

C++

[in] u32ChannelCount

Indicates the number of available audio channels in the offloaded stream.

[in] pf32Volumes

A pointer to the volume levels for the various audio channels in the offloaded stream.

u32CurveType

A value from the AUDIO_CURVE_TYPE enumeration specifying the curve to use when
changing the channel volumes.

pCurveDuration

A LONGLONG value specifying the curve duration in hundred nanosecond units.

Syntax

HRESULT SetChannelVolumes( 
  [in] UINT32           u32ChannelCount, 
  [in] FLOAT32          *pf32Volumes, 
       AUDIO_CURVE_TYPE u32CurveType, 
       HNSTIME          *pCurveDuration 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ne-ksmedia-audio_curve_type


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The SetChannelVolumes method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

IAudioEndpointOffloadStreamVolume

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudioendpointoffloadstreamvolume


IAudioLfxControl interface
(audioengineendpoint.h)
Article07/22/2021

The IAudioLfxControl interface allows the client to apply or remove local effects from
the offloaded audio stream.

The IAudioLfxControl interface inherits from the IUnknown interface. IAudioLfxControl
also has these types of members:

The IAudioLfxControl interface has these methods.

 

IAudioLfxControl::GetLocalEffectsState  

The GetLocalEffectsState method retrieves the local effects state that is currently applied to the
offloaded audio stream.

IAudioLfxControl::SetLocalEffectsState  

The SetLocalEffectsState method sets the local effects state that is to be applied to the offloaded
audio stream.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioLfxControl::GetLocalEffectsState
method (audioengineendpoint.h)
Article10/13/2021

The GetLocalEffectsState method retrieves the local effects state that is currently
applied to the offloaded audio stream.

C++

[out] pbEnabled

A pointer to the Boolean variable that indicates the state of the local effects that have
been applied to the offloaded audio stream. A value of TRUE indicates that local effects
have been enabled and applied to the stream. A value of FALSE indicates that local
effects have been disabled.

The GetLocalEffectsState method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Syntax

HRESULT GetLocalEffectsState( 
  [out] BOOL *pbEnabled 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioengineendpoint.h

IAudioLfxControl

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudiolfxcontrol


IAudioLfxControl::SetLocalEffectsState
method (audioengineendpoint.h)
Article10/13/2021

The SetLocalEffectsState method sets the local effects state that is to be applied to the
offloaded audio stream.

C++

[in] bEnabled

Indicates the local effects state that is to be applied to the offloaded audio stream. A
value of TRUE enables local effects, and the local effects in the audio graph are applied
to the stream. A value of FALSE disables local effects, so that the local effects in the
audio graph are not applied to the audio stream.

The SetLocalEffectsState method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Syntax

HRESULT SetLocalEffectsState( 
  [in] BOOL bEnabled 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioengineendpoint.h

IAudioLfxControl

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-iaudiolfxcontrol


IHardwareAudioEngineBase interface
(audioengineendpoint.h)
Article08/03/2021

The IHardwareAudioEngineBase interface is implemented by audio endpoints for the
audio stack to use to configure and retrieve information about the hardware audio
engine.

The IHardwareAudioEngineBase interface inherits from the IUnknown interface.
IHardwareAudioEngineBase also has these types of members:

The IHardwareAudioEngineBase interface has these methods.

 

IHardwareAudioEngineBase::GetAvailableOffloadConnectorCount  

The GetAvailableOffloadConnectorCount method retrieves the number of available endpoints that
can handle offloaded streams on the hardware audio engine.

IHardwareAudioEngineBase::GetEngineFormat  

The GetEngineFormat method retrieves the current data format of the offloaded audio stream.

IHardwareAudioEngineBase::GetGfxState  

The GetGfxState method retrieves the GFX state of the offloaded audio stream.

IHardwareAudioEngineBase::SetEngineDeviceFormat  

The SetEngineDeviceFormat method sets the waveform audio format for the hardware audio
engine.

IHardwareAudioEngineBase::SetGfxState  

The SetGfxState method sets the GFX state of the offloaded audio stream.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IHardwareAudioEngineBase::GetAvailabl
eOffloadConnectorCount method
(audioengineendpoint.h)
Article10/13/2021

The GetAvailableOffloadConnectorCount method retrieves the number of available
endpoints that can handle offloaded streams on the hardware audio engine.

C++

[in] _pwstrDeviceId

A pointer to the device ID of the hardware audio engine device.

[in] _uConnectorId

The identifier for the endpoint connector.

[out] _pAvailableConnectorInstanceCount

A pointer to the number of available endpoint connectors that can handle offloaded
audio streams.

The GetAvailableOffloadConnectorCount method returns S_OK to indicate that it has
completed successfully. Otherwise it returns an appropriate error code.

Syntax

HRESULT GetAvailableOffloadConnectorCount( 
  [in]  LPWSTR _pwstrDeviceId, 
  [in]  UINT32 _uConnectorId, 
  [out] UINT32 *_pAvailableConnectorInstanceCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 8 [desktop apps only]

Minimum supported server Windows Server 2012 [desktop apps only]

Target Platform Windows

Header audioengineendpoint.h

IHardwareAudioEngineBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-ihardwareaudioenginebase


IHardwareAudioEngineBase::GetEngineF
ormat method (audioengineendpoint.h)
Article10/13/2021

The GetEngineFormat method retrieves the current data format of the offloaded audio
stream.

C++

[in] pDevice

A pointer to an IMMDevice interface.

[in] _bRequestDeviceFormat

A Boolean variable that indicates whether or not the IMMDevice interface is being
accessed to retrieve the device format.

[out] _ppwfxFormat

A pointer to a pointer to a WAVEFORMATEX structure that provides information about
the hardware audio engine. This includes the waveform audio format type, the number
of audio channels, and the sample rate of the audio engine.

The GetEngineFormat method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

Syntax

HRESULT GetEngineFormat( 
  [in]  IMMDevice    *pDevice, 
  [in]  BOOL         _bRequestDeviceFormat, 
  [out] WAVEFORMATEX **_ppwfxFormat 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audioengineendpoint.h

IHardwareAudioEngineBase

IMMDevice

WAVEFORMATEX

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-ihardwareaudioenginebase
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex


IHardwareAudioEngineBase::GetGfxStat
e method (audioengineendpoint.h)
Article10/13/2021

The GetGfxState method retrieves the GFX state of the offloaded audio stream.

C++

[in] pDevice

Pointer to an IMMDevice interface.

[out] _pbEnable

Pointer to a boolean variable.

The GetGfxState method returns S_OK to indicate that it has completed successfully.
Otherwise it returns an appropriate error code.

   

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT GetGfxState( 
  [in]  IMMDevice *pDevice, 
  [out] BOOL      *_pbEnable 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IHardwareAudioEngineBase

IMMDevice

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-ihardwareaudioenginebase
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


IHardwareAudioEngineBase::SetEngineD
eviceFormat method
(audioengineendpoint.h)
Article10/13/2021

The SetEngineDeviceFormat method sets the waveform audio format for the hardware
audio engine.

C++

[in] pDevice

A pointer to an IMMDevice interface.

[in] _pwfxFormat

A pointer to a WAVEFORMATEX structure that provides information about the hardware
audio engine.

The SetEngineDeviceFormat method returns S_OK to indicate that it has completed
successfully. Otherwise it returns an appropriate error code.

   

Target Platform Windows

Syntax

HRESULT SetEngineDeviceFormat( 
  [in] IMMDevice    *pDevice, 
  [in] WAVEFORMATEX *_pwfxFormat 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audioengineendpoint.h

IHardwareAudioEngineBase

IMMDevice

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-ihardwareaudioenginebase
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


IHardwareAudioEngineBase::SetGfxState
method (audioengineendpoint.h)
Article10/13/2021

The SetGfxState method sets the GFX state of the offloaded audio stream.

C++

[in] pDevice

Pointer to an IMMDevice interface.

[in] _bEnable

Pointer to a boolean variable.

The SetGfxState method returns S_OK to indicate that it has completed successfully.
Otherwise it returns an appropriate error code.

   

Target Platform Windows

Header audioengineendpoint.h

Syntax

HRESULT SetGfxState( 
  [in] IMMDevice *pDevice, 
  [in] BOOL      _bEnable 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IHardwareAudioEngineBase

IMMDevice

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioengineendpoint/nn-audioengineendpoint-ihardwareaudioenginebase
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


audiopolicy.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

audiopolicy.h contains the following programming interfaces:

 

IAudioSessionControl  

The IAudioSessionControl interface enables a client to configure the control parameters for an
audio session and to monitor events in the session.

IAudioSessionControl2  

The IAudioSessionControl2 interface can be used by a client to get information about the audio
session.

IAudioSessionEnumerator  

The IAudioSessionEnumerator interface enumerates audio sessions on an audio device.

IAudioSessionEvents  

The IAudioSessionEvents interface provides notifications of session-related events such as
changes in the volume level, display name, and session state.

IAudioSessionManager  

The IAudioSessionManager interface enables a client to access the session controls and volume
controls for both cross-process and process-specific audio sessions.

IAudioSessionManager2  

The IAudioSessionManager2 interface enables an application to manage submixes for the audio
device.

IAudioSessionNotification  

The IAudioSessionNotification interface provides notification when an audio session is created.

Interfaces



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioVolumeDuckNotification  

The IAudioVolumeDuckNotification interface is used to by the system to send notifications about
stream attenuation changes.Stream Attenuation, or ducking, is a feature introduced in Windows 7,
where the system adjusts the volume of a non-communication stream when a new
communication stream is opened. For more information about this feature, see Default Ducking
Experience.

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioSessionControl interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionControl interface enables a client to configure the control parameters
for an audio session and to monitor events in the session. The IAudioClient::Initialize
method initializes a stream object and assigns the stream to an audio session. The client
obtains a reference to the IAudioSessionControl interface on a stream object by calling
the IAudioClient::GetService method with parameter riid set to REFIID
IID_IAudioSessionControl.

Alternatively, a client can obtain the IAudioSessionControl interface of an existing
session without having to first create a stream object and add the stream to the session.
Instead, the client calls the IAudioSessionManager::GetAudioSessionControl method
with parameter AudioSessionGuid set to the session GUID.

The client can register to receive notification from the session manager when clients
change session parameters through the methods in the IAudioSessionControl interface.

When releasing an IAudioSessionControl interface instance, the client must call the
interface's Release method from the same thread as the call to IAudioClient::GetService
that created the object.

The IAudioSessionControl interface controls an audio session. An audio session is a
collection of shared-mode streams. This interface does not work with exclusive-mode
streams.

For a code example that uses the IAudioSessionControl interface, see Audio Events for
Legacy Audio Applications.

The IAudioSessionControl interface inherits from the IUnknown interface.
IAudioSessionControl also has these types of members:

The IAudioSessionControl interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager-getaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IAudioSessionControl::GetDisplayName  

The GetDisplayName method retrieves the display name for the audio session.

IAudioSessionControl::GetGroupingParam  

The GetGroupingParam method retrieves the grouping parameter of the audio session.

IAudioSessionControl::GetIconPath  

The GetIconPath method retrieves the path for the display icon for the audio session.

IAudioSessionControl::GetState  

The GetState method retrieves the current state of the audio session.

IAudioSessionControl::RegisterAudioSessionNotification  

The RegisterAudioSessionNotification method registers the client to receive notifications of
session events, including changes in the stream state.

IAudioSessionControl::SetDisplayName  

The SetDisplayName method assigns a display name to the current session.

IAudioSessionControl::SetGroupingParam  

The SetGroupingParam method assigns a session to a grouping of sessions.

IAudioSessionControl::SetIconPath  

The SetIconPath method assigns a display icon to the current session.

IAudioSessionControl::UnregisterAudioSessionNotification  

The UnregisterAudioSessionNotification method deletes a previous registration by the client to
receive notifications.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audiopolicy.h

Core Audio Interfaces

IAudioClient::GetService

IAudioClient::Initialize

IAudioSessionManager::GetAudioSessionControl

WASAPI

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager-getaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioSessionControl::GetDisplayName
method (audiopolicy.h)
Article10/13/2021

The GetDisplayName method retrieves the display name for the audio session.

C++

[out] pRetVal

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string that contains the display name. The method allocates
the storage for the string. The caller is responsible for freeing the storage, when it is no
longer needed, by calling the CoTaskMemFree function. For information about
CoTaskMemFree, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pRetVal is NULL.

E_OUTOFMEMORY Out of memory.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetDisplayName( 
  [out] LPWSTR *pRetVal 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the client has not called IAudioSessionControl::SetDisplayName to set the display
name, the string will be empty. Rather than display an empty name string, the Sndvol
program uses a default, automatically generated name to label the volume control for
the audio session.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::SetDisplayName

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname


IAudioSessionControl::GetGroupingPara
m method (audiopolicy.h)
Article10/13/2021

The GetGroupingParam method retrieves the grouping parameter of the audio session.

C++

[out] pRetVal

Output pointer for the grouping-parameter GUID. This parameter must be a valid, non-
NULL pointer to a caller-allocated GUID variable. The method writes the grouping
parameter into this variable.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pRetVal is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT GetGroupingParam( 
  [out] GUID *pRetVal 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

All of the audio sessions that have the same grouping parameter value are under the
control of the same volume-level slider in the system volume-control program, Sndvol.
For more information, see Grouping Parameters.

A client can call the IAudioSessionControl::SetGroupingParam method to change the
grouping parameter of a session.

If a client has never called SetGroupingParam to assign a grouping parameter to an
audio session, the session's grouping parameter value is GUID_NULL by default and a
call to GetGroupingParam retrieves this value. A grouping parameter value of
GUID_NULL indicates that the session does not belong to any grouping. In that case, the
session has its own volume-level slider in the Sndvol program.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::SetGroupingParam

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/grouping-parameters
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam


IAudioSessionControl::GetIconPath
method (audiopolicy.h)
Article10/13/2021

The GetIconPath method retrieves the path for the display icon for the audio session.

C++

[out] pRetVal

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string that specifies the fully qualified path of an .ico, .dll, or
.exe file that contains the icon. The method allocates the storage for the string. The
caller is responsible for freeing the storage, when it is no longer needed, by calling the
CoTaskMemFree function. For information about icon paths and CoTaskMemFree, see
the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pRetVal is NULL.

E_OUTOFMEMORY Out of memory.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

Syntax

HRESULT GetIconPath( 
  [out] LPWSTR *pRetVal 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree


Feedback

Was this page helpful?

Get help at Microsoft Q&A

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

If a client has not called IAudioSessionControl::SetIconPath to set the display icon, the
string will be empty. If no client-specified icon is available, the Sndvol program uses the
icon from the client's application window to label the volume control for the audio
session.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::SetIconPath

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath


IAudioSessionControl::GetState method
(audiopolicy.h)
Article10/13/2021

The GetState method retrieves the current state of the audio session.

C++

[out] pRetVal

Pointer to a variable into which the method writes the current session state. The state
must be one of the following AudioSessionState enumeration values:

AudioSessionStateActive

AudioSessionStateInactive

AudioSessionStateExpired

These values indicate that the session state is active, inactive, or expired, respectively.
For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pRetVal is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have

Syntax

HRESULT GetState( 
  [out] AudioSessionState *pRetVal 
); 

Parameters

Return value



been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

This method indicates whether the state of the session is active, inactive, or expired. The
state is active if the session has one or more streams that are running. The state changes
from active to inactive when the last running stream in the session stops. The session
state changes to expired when the client destroys the last stream in the session by
releasing all references to the stream object.

The Sndvol program displays volume and mute controls for sessions that are in the
active and inactive states. When a session expires, Sndvol stops displaying the controls
for that session. If a session has previously expired, but the session state changes to
active (because a stream in the session begins running) or inactive (because a client
assigns a new stream to the session), Sndvol resumes displaying the controls for the
session.

The client creates a stream by calling the IAudioClient::Initialize method. At the time that
it creates a stream, the client assigns the stream to a session. A session begins when a
client assigns the first stream to the session. Initially, the session is in the inactive state.
The session state changes to active when the first stream in the session begins running.
The session terminates when a client releases the final reference to the last remaining
stream object in the session.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioClient::Initialize

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionControl Interface

IMMDevice::Activate

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate


IAudioSessionControl::RegisterAudioSes
sionNotification method (audiopolicy.h)
Article10/13/2021

The RegisterAudioSessionNotification method registers the client to receive
notifications of session events, including changes in the stream state.

C++

[in] NewNotifications

Pointer to a client-implemented IAudioSessionEvents interface. If the method succeeds,
it calls the AddRef method on the client's IAudioSessionEvents interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter NewNotifications is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

Syntax

HRESULT RegisterAudioSessionNotification( 
  [in] IAudioSessionEvents *NewNotifications 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref


This method passes a client-implemented IAudioSessionEvents interface to the session
manager. Following a successful call to this method, the session manager calls the
methods in the IAudioSessionEvents interface to notify the client of various session
events. Through these methods, the client receives notifications of the following
session-related events:

Display name changes
Volume level changes
Session state changes (inactive to active, or active to inactive)
Grouping parameter changes
Disconnection of the client from the session (caused by the user removing the
audio endpoint device, shutting down the session manager, or changing the
stream format)

When notifications are no longer needed, the client can call the
IAudioSessionControl::UnregisterAudioSessionNotification method to terminate the
notifications.

Before the client releases its final reference to the IAudioSessionEvents interface, it
should call UnregisterAudioSessionNotification to unregister the interface. Otherwise,
the application leaks the resources held by the IAudioSessionEvents and
IAudioSessionControl objects. Note that RegisterAudioSessionNotification calls the
client's IAudioSessionEvents::AddRef method, and UnregisterAudioSessionNotification
calls the IAudioSessionEvents::Release method. If the client errs by releasing its reference
to the IAudioSessionEvents interface before calling
UnregisterAudioSessionNotification, the session manager never releases its reference
to the IAudioSessionEvents interface. For example, a poorly designed
IAudioSessionEvents implementation might call UnregisterAudioSessionNotification
from the destructor for the IAudioSessionEvents object. In this case, the client will not
call UnregisterAudioSessionNotification until the session manager releases its reference
to the IAudioSessionEvents interface, and the session manager will not release its
reference to the IAudioSessionEvents interface until the client calls
UnregisterAudioSessionNotification. For more information about the AddRef and
Release methods, see the discussion of the IUnknown interface in the Windows SDK
documentation.

In addition, the client should call UnregisterAudioSessionNotification before releasing all
of its references to the IAudioSessionControl and IAudioSessionManager objects. Unless
the client retains a reference to at least one of these two objects, the session manager
leaks the storage that it allocated to hold the registration information. After registering
a notification interface, the client continues to receive notifications for only as long as at
least one of these two objects exists.

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager


Feedback

Was this page helpful?

Get help at Microsoft Q&A

For a code example that calls the RegisterAudioSessionNotification method, see Audio
Events for Legacy Audio Applications.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::UnregisterAudioSessionNotification

IAudioSessionEvents Interface

IAudioSessionManager

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager


IAudioSessionControl::SetDisplayName
method (audiopolicy.h)
Article10/13/2021

The SetDisplayName method assigns a display name to the current session.

C++

[in] Value

Pointer to a null-terminated, wide-character string that contains the display name for
the session.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a name-change
event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetDisplayName( 
  [in] LPCWSTR Value, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Return code Description

E_POINTER Parameter Value is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

In Windows Vista, the system-supplied program, Sndvol.exe, uses the display name to
label the volume control for the session. If the client does not call SetDisplayName to
assign a display name to the session, the Sndvol program uses a default, automatically
generated name to label the session. The default name incorporates information such as
the window title or version resource of the audio application.

If a client has more than one active session, client-specified display names are especially
helpful for distinguishing among the volume controls for the various sessions.

In the case of a cross-process session, the session has no identifying information, such
as an application name or process ID, from which to generate a default display name.
Thus, the client must call SetDisplayName to avoid displaying a meaningless default
display name.

The display name does not persist beyond the lifetime of the IAudioSessionControl
object. Thus, after all references to the object are released, a subsequently created
version of the object (with the same application, same session GUID, and same endpoint
device) will once again have a default, automatically generated display name until the
client calls SetDisplayName.

The client can retrieve the display name for the session by calling the
IAudioSessionControl::GetDisplayName method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getdisplayname


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::GetDisplayName

IAudioSessionEvents Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getdisplayname
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionControl::SetGroupingPara
m method (audiopolicy.h)
Article10/13/2021

The SetGroupingParam method assigns a session to a grouping of sessions.

C++

[in] Override

The new grouping parameter. This parameter must be a valid, non-NULL pointer to a
grouping-parameter GUID. For more information, see Remarks.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates a grouping-change
event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetGroupingParam( 
  [in] LPCGUID Override, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Return code Description

E_POINTER Parameter Grouping is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

A client calls this method to change the grouping parameter of a session. All of the
audio sessions that have the same grouping parameter value are under the control of
the same volume-level slider in the system volume-control program, Sndvol. For more
information, see Grouping Parameters.

The client can get the current grouping parameter for the session by calling the
IAudioSessionControl::GetGroupingParam method.

If a client has never called SetGroupingParam to assign a grouping parameter to a
session, the session does not belong to any grouping. A session that does not belong to
any grouping has its own, dedicated volume-level slider in the Sndvol program.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionControl::GetGroupingParam

IAudioSessionEvents Interface

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/grouping-parameters
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioSessionControl::SetIconPath
method (audiopolicy.h)
Article10/13/2021

The SetIconPath method assigns a display icon to the current session.

C++

[in] Value

Pointer to a null-terminated, wide-character string that specifies the path and file name
of an .ico, .dll, or .exe file that contains the icon. For information about icon paths, see
the Windows SDK documentation.

[in] EventContext

Pointer to the event-context GUID. If a call to this method generates an icon-change
event, the session manager sends notifications to all clients that have registered
IAudioSessionEvents interfaces with the session manager. The session manager includes
the EventContext pointer value with each notification. Upon receiving a notification, a
client can determine whether it or another client is the source of the event by inspecting
the EventContext value. This scheme depends on the client selecting a value for this
parameter that is unique among all clients in the session. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetIconPath( 
  [in] LPCWSTR Value, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Return code Description

E_POINTER Parameter Value is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

In Windows Vista, the system-supplied program, Sndvol.exe, uses the display icon (along
with the display name) to label the volume control for the session. If the client does not
call SetIconPath to assign an icon to the session, the Sndvol program uses the icon from
the application window as the default icon for the session.

In the case of a cross-process session, the session is not associated with a single
application process. Thus, Sndvol has no application-specific icon to use by default, and
the client must call SetIconPath to avoid displaying a meaningless icon.

The display icon does not persist beyond the lifetime of the IAudioSessionControl
object. Thus, after all references to the object are released, a subsequently created
version of the object (with the same application, same session GUID, and same endpoint
device) will once again have a default icon until the client calls SetIconPath.

The client can retrieve the display icon for the session by calling the
IAudioSessionControl::GetIconPath method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-geticonpath


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionControl Interface

IAudioSessionControl::GetIconPath

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-geticonpath


IAudioSessionControl::UnregisterAudioS
essionNotification method
(audiopolicy.h)
Article10/13/2021

The UnregisterAudioSessionNotification method deletes a previous registration by the
client to receive notifications.

C++

[in] NewNotifications

Pointer to a client-implemented IAudioSessionEvents interface. The client passed this
same interface pointer to the session manager in a previous call to the
IAudioSessionControl::RegisterAudioSessionNotification method. If the
UnregisterAudioSessionNotification method succeeds, it calls the Release method on
the client's IAudioSessionEvents interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter NewNotifications is NULL.

E_NOTFOUND The specified interface was not previously registered by
the client or has already been removed.

Syntax

HRESULT UnregisterAudioSessionNotification( 
  [in] IAudioSessionEvents *NewNotifications 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


The client calls this method when it no longer needs to receive notifications. The
UnregisterAudioSessionNotification method removes the registration of an
IAudioSessionEvents interface that the client previously registered with the session
manager by calling the IAudioSessionControl::RegisterAudioSessionNotification method.

Before the client releases its final reference to the IAudioSessionEvents interface, it
should call UnregisterAudioSessionNotification to unregister the interface. Otherwise,
the application leaks the resources held by the IAudioSessionEvents and
IAudioSessionControl objects. Note that RegisterAudioSessionNotification calls the
client's IAudioSessionEvents::AddRef method, and UnregisterAudioSessionNotification
calls the IAudioSessionEvents::Release method. If the client errs by releasing its reference
to the IAudioSessionEvents interface before calling
UnregisterAudioSessionNotification, the session manager never releases its reference
to the IAudioSessionEvents interface. For example, a poorly designed
IAudioSessionEvents implementation might call UnregisterAudioSessionNotification
from the destructor for the IAudioSessionEvents object. In this case, the client will not
call UnregisterAudioSessionNotification until the session manager releases its reference
to the IAudioSessionEvents interface, and the session manager will not release its
reference to the IAudioSessionEvents interface until the client calls
UnregisterAudioSessionNotification. For more information about the AddRef and
Release methods, see the discussion of the IUnknown interface in the Windows SDK
documentation.

For a code example that calls the UnregisterAudioSessionNotification method, see
Audio Events for Legacy Audio Applications.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionControl Interface

IAudioSessionControl::RegisterAudioSessionNotification

IAudioSessionEvents Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionControl2 interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionControl2 interface can be used by a client to get information about
the audio session.

To get a reference to the IAudioSessionControl2 interface, the application must call
IAudioSessionControl::QueryInterface to request the interface pointer from the stream
object's IAudioSessionControl interface. There are two ways an application can get a
pointer to the IAudioSessionControl interface:

By calling IAudioClient::GetService on the audio client after opening a stream on
the device. The audio client opens a stream for rendering or capturing, and
associates it with an audio session by calling IAudioClient::Initialize.
By calling IAudioSessionManager::GetAudioSessionControl for an existing audio
session without opening the stream.

When the application wants to release the IAudioSessionControl2 interface instance,
the application must call the interface's Release method from the same thread as the
call to IAudioClient::GetService that created the object.

The application thread that uses this interface must be initialized for COM. For more
information about COM initialization, see the description of the CoInitializeEx function
in the Windows SDK documentation.

The IAudioSessionControl2 interface inherits from IAudioSessionControl.
IAudioSessionControl2 also has these types of members:

The IAudioSessionControl2 interface has these methods.

 

IAudioSessionControl2::GetProcessId  

The GetProcessId method retrieves the process identifier of the audio session.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager-getaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol


 

IAudioSessionControl2::GetSessionIdentifier  

The GetSessionIdentifier method retrieves the audio session identifier.

IAudioSessionControl2::GetSessionInstanceIdentifier  

The GetSessionInstanceIdentifier method retrieves the identifier of the audio session instance.

IAudioSessionControl2::IsSystemSoundsSession  

The IsSystemSoundsSession method indicates whether the session is a system sounds session.

IAudioSessionControl2::SetDuckingPreference  

The SetDuckingPreference method enables or disables the default stream attenuation experience
(auto-ducking) provided by the system.

This interface supports custom implementations for stream attenuation or ducking, a
new feature in Windows 7. An application playing a media stream can make it behave
differently when a new communication stream is opened on the default communication
device. For example, the original media stream can be paused while the new
communication stream is open. For more information about this feature, see Default
Ducking Experience.

An application can use this interface to perform the following tasks:

Specify that it wants to opt out of the default stream attenuation experience
provided by the system.
Get the audio session identifier that is associated with the stream. The identifier is
required during the notification registration. The application can register itself to
receive ducking notifications from the system.
Check whether the stream associated with the audio session is a system sound.

The following example code shows how to get a reference to the
IAudioSessionControl2 interface and call its methods to determine whether the stream
associated with the audio session is a system sound.

C++

Remarks

Examples

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/stream-attenuation


HRESULT SetDuckingForSystemSounds() 
{ 
  
    HRESULT hr = S_OK; 
     
    IMMDevice* pDevice = NULL; 
    IMMDeviceEnumerator* pEnumerator = NULL; 
    IAudioSessionControl* pSessionControl = NULL; 
    IAudioSessionControl2* pSessionControl2 = NULL; 
    IAudioSessionManager* pSessionManager = NULL; 

    CHECK_HR( hr = CoInitialize(NULL)); 

    // Create the device enumerator. 
    CHECK_HR( hr = CoCreateInstance( 
        __uuidof(MMDeviceEnumerator),  
        NULL, CLSCTX_ALL,  
        __uuidof(IMMDeviceEnumerator),  
        (void**)&pEnumerator)); 

    // Get the default audio device. 
    CHECK_HR( hr = pEnumerator->GetDefaultAudioEndpoint( 
                    eRender, eConsole, &pDevice)); 

    // Get the audio client. 
    CHECK_HR( hr = pDevice->Activate( 
        __uuidof(IID_IAudioSessionManager), CLSCTX_ALL, 
        NULL, (void**)&pSessionManager)); 

    // Get a reference to the session manager. 
    CHECK_HR( hr = pSessionManager->GetAudioSessionControl (GUID_NULL, 
FALSE, &pSessionControl)); 
     
    // Get the extended session control interface pointer. 
    CHECK_HR( hr = pSessionControl->QueryInterface( 
        __uuidof(IAudioSessionControl2), (void**) &pSessionControl2)); 

    // Check whether this is a system sound. 
    CHECK_HR( hr = pSessionControl2->IsSystemSoundsSession()); 

    // If it is a system sound, opt out of the default 
    // stream attenuation experience. 
    CHECK_HR( hr = pSessionControl2->SetDuckingPreference(TRUE)); 

done: 

    // Clean up. 
    SAFE_RELEASE(pSessionControl2); 
    SAFE_RELEASE(pSessionControl); 
    SAFE_RELEASE(pEnumerator); 
    SAFE_RELEASE(pDevice); 

    return hr; 
} 



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Core Audio Interfaces

IAudioSessionControl

Using a Communication Device

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


IAudioSessionControl2::GetProcessId
method (audiopolicy.h)
Article10/13/2021

The GetProcessId method retrieves the process identifier of the audio session.

C++

[out] pRetVal

Pointer to a DWORD variable that receives the process identifier of the audio session.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER pRetVal is NULL.

AUDCLNT_S_NO_SINGLE_PROCESS The session spans more than one process. In this case,
pRetVal receives the initial identifier of the process that
created the session. To use this value , include the
following definition:

#define AUDCLNT_S_NO_SINGLE_PROCESS AUDCLNT_SUCCESS

(0x00d)

AUDCLNT_E_DEVICE_INVALIDATED The audio session is disconnected on the default audio
device.

Syntax

HRESULT GetProcessId( 
  [out] DWORD *pRetVal 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

This method overwrites the value that was passed by the application in pRetVal.

GetProcessId checks whether the audio session has been disconnected on the default
device or if the session has switched to another stream. In the case of stream switching,
this method transfers state information for the new stream to the session. State
information includes volume controls, metadata information (display name, icon path),
and the session's property store.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl2

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol2


IAudioSessionControl2::GetSessionIdent
ifier method (audiopolicy.h)
Article10/13/2021

The GetSessionIdentifier method retrieves the audio session identifier.

C++

[out] pRetVal

Pointer to the address of a null-terminated, wide-character string that receives the audio
session identifier. The string is allocated by this method and must be released by the
caller by calling CoTaskMemFree. For information about CoTaskMemFree, see the
Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER pRetVal is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio session is disconnected on the default audio
device.

Each audio session is identified by an identifier string. This session identifier string is not
unique across all instances. If there are two instances of the application playing, both

Syntax

HRESULT GetSessionIdentifier( 
  [out] LPWSTR *pRetVal 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

instances will have the same session identifier. The identifier retrieved by
GetSessionIdentifier is different from the session instance identifier, which is unique
across all sessions. To get the session instance identifier, call
IAudioSessionControl2::GetSessionInstanceIdentifier.

GetSessionIdentifier checks whether the session has been disconnected on the default
device. It retrieves the identifier string that is cached by the audio client for the device. If
the session identifier is not found, this method retrieves it from the audio engine.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-getsessioninstanceidentifier
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol2


IAudioSessionControl2::GetSessionInsta
nceIdentifier method (audiopolicy.h)
Article10/13/2021

The GetSessionInstanceIdentifier method retrieves the identifier of the audio session
instance.

C++

[out] pRetVal

Pointer to the address of a null-terminated, wide-character string that receives the
identifier of a particular instance of the audio session. The string is allocated by this
method and must be released by the caller by calling CoTaskMemFree. For information
about CoTaskMemFree, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER pRetVal is NULL.

AUDCLNT_E_DEVICE_INVALIDATED The audio session is disconnected on the default audio
device.

Syntax

HRESULT GetSessionInstanceIdentifier( 
  [out] LPWSTR *pRetVal 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Each audio session instance is identified by a unique string. This string represents a
particular instance of the audio session and, unlike the session identifier, is unique
across all instances. If there are two instances of the application playing, they will have
different session instance identifiers. The identifier retrieved by
GetSessionInstanceIdentifier is different from the session identifier, which is shared by
all session instances. To get the session identifier, call
IAudioSessionControl2::GetSessionIdentifier.

GetSessionInstanceIdentifier checks whether the session has been disconnected on the
default device. It retrieves the identifier string that is cached by the audio client for the
device. If the session instance identifier is not found, this method retrieves it from the
audio engine. For example code about getting a session instance identifier, see Getting
Ducking Events from a Communication Device.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl2

Using a Communication Device

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-getsessionidentifier
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/getting-ducking-events-from-a-communication-device
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol2
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


IAudioSessionControl2::IsSystemSounds
Session method (audiopolicy.h)
Article10/05/2021

The IsSystemSoundsSession method indicates whether the session is a system sounds
session.

C++

The possible return codes include, but are not limited to, the values shown in the
following table.

Return code Description

S_OK The session is a system sounds session.

S_FALSE The session is not a system sounds session.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl2

Syntax

HRESULT IsSystemSoundsSession(); 

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol2


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioSessionControl2::SetDuckingPrefe
rence method (audiopolicy.h)
Article10/13/2021

The SetDuckingPreference method enables or disables the default stream attenuation
experience (auto-ducking) provided by the system.

C++

[in] optOut

A BOOL variable that enables or disables system auto-ducking.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

AUDCLNT_E_DEVICE_INVALIDATED The audio session is disconnected on the default audio
device.

By default, the system adjusts the volume for all currently playing sounds when the
system starts a communication session and receives a new communication stream on
the default communication device. For more information about this feature, see Using a
Communication Device.

Syntax

HRESULT SetDuckingPreference( 
  [in] BOOL optOut 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the application passes TRUE in optOut, the system disables the Default Ducking
Experience. For more information, see Disabling the Default Ducking Experience.

To provide a custom implementation, the application needs to get notifications from the
system when it opens or closes the communication stream. To receive the notifications,
the application must call this method before registering itself by calling
IAudioSessionManager2::RegisterForDuckNotification. For more information and
example code, see Getting Ducking Events.

If the application passes FALSE in optOut, the application provides the default stream
attenuation experience provided by the system.

We recommend that the application call SetDuckingPreference during stream creation.
However, this method can be called dynamically during the session to change the initial
preference.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/stream-attenuation
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/disabling-the-ducking-experience
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/getting-ducking-events-from-a-communication-device
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol2


IAudioSessionEnumerator interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionEnumerator interface enumerates audio sessions on an audio device.
To get a reference to the IAudioSessionEnumerator interface of the session enumerator
object, the application must call IAudioSessionManager2::GetSessionEnumerator.

The IAudioSessionEnumerator interface inherits from the IUnknown interface.
IAudioSessionEnumerator also has these types of members:

The IAudioSessionEnumerator interface has these methods.

 

IAudioSessionEnumerator::GetCount  

The GetCount method gets the total number of audio sessions that are open on the audio device.

IAudioSessionEnumerator::GetSession  

The GetSession method gets the audio session specified by an audio session number.

If an application wants to be notified when new sessions are created, it must register its
implementation of IAudioSessionNotification with the session manager. Upon successful
registration, the session manager sends create-session notifications to the application in
the form of callbacks. These notifications contain a reference to the
IAudioSessionControl pointer of the newly created session.

The session enumerator maintains a list of current sessions by holding references to
each session's IAudioSessionControl pointer. However, the session enumerator might
not be aware of the new sessions that are reported through IAudioSessionNotification.
In that case, the application would have access to only a partial list of sessions. This
might occur if the IAudioSessionControl pointer (in the callback) is released before the

Inheritance

Methods

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-getsessionenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification


session enumerator is initialized. Therefore, if an application wants a complete set of
sessions for the audio endpoint, the application should maintain its own list.

The application must perform the following steps to receive session notifications and
manage a list of current sessions.

1. Initialize COM with the Multithreaded Apartment (MTA) model by calling
CoInitializeEx(NULL, COINIT_MULTITHREADED)  in a non-UI thread. If MTA is not
initialized, the application does not receive session notifications from the session
manager.

 
2. Activate an IAudioSessionManager2 interface from the audio endpoint device. Call

IMMDevice::Activate with parameter iid set to IID_IAudioSessionManager2. This
call receives a reference to the session manager's IAudioSessionManager2
interface in the ppInterface parameter.

3. Implement the IAudioSessionNotification interface to provide the callback
behavior.

4. Call IAudioSessionManager2::RegisterSessionNotification to register the
application's implementation of IAudioSessionNotification.

5. Create and initialize the session enumerator object by calling
IAudioSessionManager2::GetSessionEnumerator. This method generates a list of
current sessions available for the endpoint and adds the IAudioSessionControl
pointers for each session in the list, if they are not already present.

6. Use the IAudioSessionEnumerator interface returned in the previous step to
retrieve and enumerate the list of sessions. The session control for each session
can be retrieved by calling IAudioSessionEnumerator::GetSession. Make sure you
call AddRef for each session control to maintain the reference count.

7. When the application gets a create-session notification, add the
IAudioSessionControl pointer of the new session (received in
IAudioSessionNotification::OnSessionCreated) to the list of existing sessions.

Because the application maintains this list of sessions and manages the lifetime of the
session based on the application's requirements, there is no expiration mechanism
enforced by the audio system on the session control objects.

A session control is valid as long as the application has a reference to the session
control in the list.

Note  Threads that run the user interface of an application should be
initialized with the apartment threading model.

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registersessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-getsessionenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionenumerator-getsession
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionnotification-onsessioncreated


The following example code shows how to create the session enumerator object and
then enumerate sessions.

C++

Examples

HRESULT EnumSessions(IAudioSessionManager2* pSessionManager) 
{ 
    if (!pSessionManager) 
    { 
        return E_INVALIDARG; 
    } 

    HRESULT hr = S_OK; 
     
    int cbSessionCount = 0; 
    LPWSTR pswSession = NULL; 
     
    IAudioSessionEnumerator* pSessionList = NULL; 
    IAudioSessionControl* pSessionControl = NULL; 
     
    // Get the current list of sessions. 
    CHECK_HR( hr = pSessionManager->GetSessionEnumerator(&pSessionList)); 
     
    // Get the session count. 
    CHECK_HR( hr = pSessionList->GetCount(&cbSessionCount)); 

    for (int index = 0 ; index < cbSessionCount ; index++) 
    { 
        CoTaskMemFree(pswSession); 
        SAFE_RELEASE(pSessionControl); 
         
        // Get the <n>th session.
        CHECK_HR(hr = pSessionList->GetSession(index, &pSessionControl)); 

        CHECK_HR(hr = pSessionControl->GetDisplayName(&pswSession)); 

        wprintf_s(L"Session Name: %s\n", pswSession); 
    } 

done: 
    CoTaskMemFree(pswSession); 
    SAFE_RELEASE(pSessionControl); 
    SAFE_RELEASE(pSessionList); 

    return hr; 

} 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioSessionEnumerator::GetCount
method (audiopolicy.h)
Article10/13/2021

The GetCount method gets the total number of audio sessions that are open on the
audio device.

C++

[out] SessionCount

Receives the total number of audio sessions.

If the method succeeds, it returns S_OK.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Syntax

HRESULT GetCount( 
  [out] int *SessionCount 
); 

Parameters

Return value

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionEnumerator

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator


IAudioSessionEnumerator::GetSession
method (audiopolicy.h)
Article10/13/2021

The GetSession method gets the audio session specified by an audio session number.

C++

[in] SessionCount

The session number. If there are n sessions, the sessions are numbered from 0 to n – 1.
To get the number of sessions, call the IAudioSessionEnumerator::GetCount method.

[out] Session

Receives a pointer to the IAudioSessionControl interface of the session object in the
collection that is maintained by the session enumerator. The caller must release the
interface pointer.

If the method succeeds, it returns S_OK.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Syntax

HRESULT GetSession( 
  [in]  int                  SessionCount, 
  [out] IAudioSessionControl **Session 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionenumerator-getcount
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audiopolicy.h

IAudioSessionEnumerator

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator


IAudioSessionEvents interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionEvents interface provides notifications of session-related events such
as changes in the volume level, display name, and session state. Unlike the other
interfaces in this section, which are implemented by the WASAPI system component, a
WASAPI client implements the IAudioSessionEvents interface. To receive event
notifications, the client passes a pointer to its IAudioSessionEvents interface to the
IAudioSessionControl::RegisterAudioSessionNotification method.

After registering its IAudioClientSessionEvents interface, the client receives event
notifications in the form of callbacks through the methods in the interface.

In implementing the IAudioSessionEvents interface, the client should observe these
rules to avoid deadlocks and undefined behavior:

The methods in the interface must be nonblocking. The client should never wait on
a synchronization object during an event callback.
The client should never call the
IAudioSessionControl::UnregisterAudioSessionNotification method during an event
callback.
The client should never release the final reference on a WASAPI object during an
event callback.

For a code example that implements an IAudioSessionEvents interface, see Audio
Session Events. For a code example that registers a client's IAudioSessionEvents
interface to receive notifications, see Audio Events for Legacy Audio Applications.

The IAudioSessionEvents interface inherits from the IUnknown interface.
IAudioSessionEvents also has these types of members:

The IAudioSessionEvents interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IAudioSessionEvents::OnChannelVolumeChanged  

The OnChannelVolumeChanged method notifies the client that the volume level of an audio
channel in the session submix has changed.

IAudioSessionEvents::OnDisplayNameChanged  

The OnDisplayNameChanged method notifies the client that the display name for the session has
changed.

IAudioSessionEvents::OnGroupingParamChanged  

The OnGroupingParamChanged method notifies the client that the grouping parameter for the
session has changed.

IAudioSessionEvents::OnIconPathChanged  

The OnIconPathChanged method notifies the client that the display icon for the session has
changed.

IAudioSessionEvents::OnSessionDisconnected  

The OnSessionDisconnected method notifies the client that the audio session has been
disconnected.

IAudioSessionEvents::OnSimpleVolumeChanged  

The OnSimpleVolumeChanged method notifies the client that the volume level or muting state of
the audio session has changed.

IAudioSessionEvents::OnStateChanged  

The OnStateChanged method notifies the client that the stream-activity state of the session has
changed.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

IAudioSessionControl::RegisterAudioSessionNotification

IAudioSessionControl::UnregisterAudioSessionNotification

WASAPI

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-unregisteraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioSessionEvents::OnChannelVolume
Changed method (audiopolicy.h)
Article10/13/2021

The OnChannelVolumeChanged method notifies the client that the volume level of an
audio channel in the session submix has changed.

C++

[in] ChannelCount

The channel count. This parameter specifies the number of audio channels in the session
submix.

[in] NewChannelVolumeArray

Pointer to an array of volume levels. Each element is a value of type float that specifies
the volume level for a particular channel. Each volume level is a value in the range 0.0 to
1.0, where 0.0 is silence and 1.0 is full volume (no attenuation). The number of elements
in the array is specified by the ChannelCount parameter. If an audio stream contains n
channels, the channels are numbered from 0 to n– 1. The array element whose index
matches the channel number, contains the volume level for that channel. Assume that
the array remains valid only for the duration of the call.

[in] ChangedChannel

The number of the channel whose volume level changed. Use this value as an index into
the NewChannelVolumeArray array. If the session submix contains n channels, the
channels are numbered from 0 to n– 1. If more than one channel might have changed

Syntax

HRESULT OnChannelVolumeChanged( 
  [in] DWORD    ChannelCount, 
  [in] float [] NewChannelVolumeArray, 
  [in] DWORD    ChangedChannel, 
  [in] LPCGUID  EventContext 
); 

Parameters



(for example, as a result of a call to the IChannelAudioVolume::SetAllVolumes method),
the value of ChangedChannel is (DWORD)(–1).

[in] EventContext

The event context value. This is the same value that the caller passed to the
IChannelAudioVolume::SetChannelVolume or IChannelAudioVolume::SetAllVolumes
method in the call that initiated the change in volume level of the channel. For more
information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The session manager calls this method each time a call to the
IChannelAudioVolume::SetChannelVolume or IChannelAudioVolume::SetAllVolumes
method successfully updates the volume level of one or more channels in the session
submix. Note that the OnChannelVolumeChanged call occurs regardless of whether the
new channel volume level or levels differ in value from the previous channel volume
level or levels.

The EventContext parameter provides a means for a client to distinguish between a
channel-volume change that it initiated and one that some other client initiated. When
calling the IChannelAudioVolume::SetChannelVolume or
IChannelAudioVolume::SetAllVolumes method, a client passes in an EventContext
parameter value that its implementation of the OnChannelVolumeChanged method can
recognize.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audiopolicy.h

IAudioSessionEvents Interface

IChannelAudioVolume::SetAllVolumes

IChannelAudioVolume::SetChannelVolume

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setallvolumes
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-setchannelvolume


IAudioSessionEvents::OnDisplayNameCh
anged method (audiopolicy.h)
Article10/13/2021

The OnDisplayNameChanged method notifies the client that the display name for the
session has changed.

C++

[in] NewDisplayName

The new display name for the session. This parameter points to a null-terminated, wide-
character string containing the new display name. The string remains valid for the
duration of the call.

[in] EventContext

The event context value. This is the same value that the caller passed to
IAudioSessionControl::SetDisplayName in the call that changed the display name for the
session. For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The session manager calls this method each time a call to the
IAudioSessionControl::SetDisplayName method changes the display name of the

Syntax

HRESULT OnDisplayNameChanged( 
  [in] LPCWSTR NewDisplayName, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname


Feedback

Was this page helpful?

Get help at Microsoft Q&A

session. The Sndvol program uses a session's display name to label the volume slider for
the session.

The EventContext parameter provides a means for a client to distinguish between a
display-name change that it initiated and one that some other client initiated. When
calling the IAudioSessionControl::SetDisplayName method, a client passes in an
EventContext parameter value that its implementation of the OnDisplayNameChanged
method can recognize.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl::SetDisplayName

IAudioSessionEvents Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setdisplayname
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionEvents::OnGroupingParam
Changed method (audiopolicy.h)
Article10/13/2021

The OnGroupingParamChanged method notifies the client that the grouping parameter
for the session has changed.

C++

[in] NewGroupingParam

The new grouping parameter for the session. This parameter points to a grouping-
parameter GUID.

[in] EventContext

The event context value. This is the same value that the caller passed to
IAudioSessionControl::SetGroupingParam in the call that changed the grouping
parameter for the session. For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The session manager calls this method each time a call to the
IAudioSessionControl::SetGroupingParam method changes the grouping parameter for
the session.

Syntax

HRESULT OnGroupingParamChanged( 
  [in] LPCGUID NewGroupingParam, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The EventContext parameter provides a means for a client to distinguish between a
grouping-parameter change that it initiated and one that some other client initiated.
When calling the IAudioSessionControl::SetGroupingParam method, a client passes in an
EventContext parameter value that its implementation of the
OnGroupingParamChanged method can recognize.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl::SetGroupingParam

IAudioSessionEvents Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-setgroupingparam
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionEvents::OnIconPathChang
ed method (audiopolicy.h)
Article10/13/2021

The OnIconPathChanged method notifies the client that the display icon for the session
has changed.

C++

[in] NewIconPath

The path for the new display icon for the session. This parameter points to a string that
contains the path for the new icon. The string pointer remains valid only for the duration
of the call.

[in] EventContext

The event context value. This is the same value that the caller passed to
IAudioSessionControl::SetIconPath in the call that changed the display icon for the
session. For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The session manager calls this method each time a call to the
IAudioSessionControl::SetIconPath method changes the display icon for the session. The
Sndvol program uses a session's display icon to label the volume slider for the session.

Syntax

HRESULT OnIconPathChanged( 
  [in] LPCWSTR NewIconPath, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The EventContext parameter provides a means for a client to distinguish between a
display-icon change that it initiated and one that some other client initiated. When
calling the IAudioSessionControl::SetIconPath method, a client passes in an EventContext
parameter value that its implementation of the OnIconPathChanged method can
recognize.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl::SetIconPath

IAudioSessionEvents Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-seticonpath
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionEvents::OnSessionDisconn
ected method (audiopolicy.h)
Article10/13/2021

The OnSessionDisconnected method notifies the client that the audio session has been
disconnected.

C++

[in] DisconnectReason

The reason that the audio session was disconnected. The caller sets this parameter to
one of the AudioSessionDisconnectReason enumeration values shown in the following
table.

Value Description

DisconnectReasonDeviceRemoval The user removed the audio endpoint device.

DisconnectReasonServerShutdown The Windows audio service has stopped.

DisconnectReasonFormatChanged The stream format changed for the device that the
audio session is connected to.

DisconnectReasonSessionLogoff The user logged off the Windows Terminal Services
(WTS) session that the audio session was running in.

DisconnectReasonSessionDisconnected The WTS session that the audio session was running
in was disconnected.

DisconnectReasonExclusiveModeOverride The (shared-mode) audio session was disconnected
to make the audio endpoint device available for an
exclusive-mode connection.

 

Syntax

HRESULT OnSessionDisconnected( 
  [in] AudioSessionDisconnectReason DisconnectReason 
); 

Parameters



For more information about WTS sessions, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

When disconnecting a session, the session manager closes the streams that belong to
that session and invalidates all outstanding requests for services on those streams. The
client should respond to a disconnection by releasing all of its references to the
IAudioClient interface for a closed stream and releasing all references to the service
interfaces that it obtained previously through calls to the IAudioClient::GetService
method.

Following disconnection, many of the methods in the WASAPI interfaces that are tied to
closed streams in the disconnected session return error code
AUDCLNT_E_DEVICE_INVALIDATED (for example, see IAudioClient::GetCurrentPadding).
For information about recovering from this error, see Recovering from an Invalid-Device
Error.

If the Windows audio service terminates unexpectedly, it does not have an opportunity
to notify clients that it is shutting down. In that case, clients learn that the service has
stopped when they call a method such as IAudioClient::GetCurrentPadding that
discovers that the service is no longer running and fails with error code
AUDCLNT_E_SERVICE_NOT_RUNNING.

A client cannot generate a session-disconnected event. The system is always the source
of this type of event. Thus, unlike some other IAudioSessionEvents methods, this
method does not have a context parameter.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/recovering-from-an-invalid-device-error
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getcurrentpadding
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header audiopolicy.h

IAudioClient Interface

IAudioClient::GetService

IAudioSessionEvents Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getservice
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionEvents::OnSimpleVolumeC
hanged method (audiopolicy.h)
Article10/13/2021

The OnSimpleVolumeChanged method notifies the client that the volume level or
muting state of the audio session has changed.

C++

[in] NewVolume

The new volume level for the audio session. This parameter is a value in the range 0.0 to
1.0, where 0.0 is silence and 1.0 is full volume (no attenuation).

[in] NewMute

The new muting state. If TRUE, muting is enabled. If FALSE, muting is disabled.

[in] EventContext

The event context value. This is the same value that the caller passed to
ISimpleAudioVolume::SetMasterVolume or ISimpleAudioVolume::SetMute in the call that
changed the volume level or muting state of the session. For more information, see
Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

Syntax

HRESULT OnSimpleVolumeChanged( 
  [in] float   NewVolume, 
  [in] BOOL    NewMute, 
  [in] LPCGUID EventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmute


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The session manager calls this method each time a call to the
ISimpleAudioVolume::SetMasterVolume or ISimpleAudioVolume::SetMute method
changes the volume level or muting state of the session.

The EventContext parameter provides a means for a client to distinguish between a
volume or mute change that it initiated and one that some other client initiated. When
calling the ISimpleAudioVolume::SetMasterVolume or ISimpleAudioVolume::SetMute
method, a client passes in an EventContext parameter value that its implementation of
the OnSimpleVolumeChanged method can recognize.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioSessionEvents Interface

ISimpleAudioVolume::SetMasterVolume

ISimpleAudioVolume::SetMute

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmute
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmute
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-setmute


IAudioSessionEvents::OnStateChanged
method (audiopolicy.h)
Article10/13/2021

The OnStateChanged method notifies the client that the stream-activity state of the
session has changed.

C++

[in] NewState

The new session state. The value of this parameter is one of the following
AudioSessionState enumeration values:

AudioSessionStateActive

AudioSessionStateInactive

AudioSessionStateExpired

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

A client cannot generate a session-state-change event. The system is always the source
of this type of event. Thus, unlike some other IAudioSessionEvents methods, this
method does not supply a context parameter.

Syntax

HRESULT OnStateChanged( 
  [in] AudioSessionState NewState
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The system changes the state of a session from inactive to active at the time that a client
opens the first stream in the session. A client opens a stream by calling the
IAudioClient::Initialize method. The system changes the session state from active to
inactive at the time that a client closes the last stream in the session. The client that
releases the last reference to an IAudioClient object closes the stream that is associated
with the object.

For a code example that implements the methods in the IAudioSessionEvents interface,
see Audio Session Events.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header audiopolicy.h

IAudioClient Interface

IAudioClient::Initialize

IAudioSessionEvents Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-session-events
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionevents


IAudioSessionManager interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionManager interface enables a client to access the session controls and
volume controls for both cross-process and process-specific audio sessions. The client
obtains a reference to an IAudioSessionManager interface by calling the
IMMDevice::Activate method with parameter iid set to REFIID
IID_IAudioSessionManager.

This interface enables clients to access the controls for an existing session without first
opening a stream. This capability is useful for clients of higher-level APIs that are built
on top of WASAPI and use session controls internally but do not give their clients access
to session controls.

In Windows Vista, the higher-level APIs that use WASAPI include Media Foundation,
DirectSound, the Windows multimedia waveInXxx, waveOutXxx, and mciXxx functions,
and third-party APIs.

When a client creates an audio stream through a higher-level API, that API typically adds
the stream to the default audio session for the client's process (the session that is
identified by the session GUID value, GUID_NULL), but the same API might not provide a
means for the client to access the controls for that session. In that case, the client can
access the controls through the IAudioSessionManager interface.

For a code example that uses the IAudioSessionManager interface, see Audio Events for
Legacy Audio Applications.

The IAudioSessionManager interface inherits from the IUnknown interface.
IAudioSessionManager also has these types of members:

The IAudioSessionManager interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioSessionManager::GetAudioSessionControl  

The GetAudioSessionControl method retrieves an audio session control.

IAudioSessionManager::GetSimpleAudioVolume  

The GetSimpleAudioVolume method retrieves a simple audio volume control.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Core Audio Interfaces

IMMDevice::Activate

WASAPI

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi


IAudioSessionManager::GetAudioSessio
nControl method (audiopolicy.h)
Article10/13/2021

The GetAudioSessionControl method retrieves an audio session control.

C++

[in] AudioSessionGuid

Pointer to a session GUID. If the GUID does not identify a session that has been
previously opened, the call opens a new but empty session. The Sndvol program does
not display a volume-level control for a session unless it contains one or more active
streams. If this parameter is NULL or points to the value GUID_NULL, the method
assigns the stream to the default session.

[in] StreamFlags

Specifies the status of the flags for the audio stream.

[out] SessionControl

Pointer to a pointer variable into which the method writes a pointer to the
IAudioSessionControl interface of the audio session control object. The caller is
responsible for releasing the interface, when it is no longer needed, by calling the
interface's Release method. If the call fails, *SessionControl is NULL.

Syntax

HRESULT GetAudioSessionControl( 
  [in]  LPCGUID              AudioSessionGuid, 
  [in]  DWORD                StreamFlags, 
  [out] IAudioSessionControl **SessionControl 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol


Feedback

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter SessionControl is NULL.

E_MEMORY Out of memory.

For a code example that calls this method, see Audio Events for Legacy Audio
Applications.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionControl Interface

IAudioSessionManager Interface

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioSessionManager::GetSimpleAudio
Volume method (audiopolicy.h)
Article10/13/2021

The GetSimpleAudioVolume method retrieves a simple audio volume control.

C++

[in] AudioSessionGuid

Pointer to a session GUID. If the GUID does not identify a session that has been
previously opened, the call opens a new but empty session. The Sndvol program does
not display a volume-level control for a session unless it contains one or more active
streams. If this parameter is NULL or points to the value GUID_NULL, the method
assigns the stream to the default session.

[in] StreamFlags

Specifies whether the request is for a cross-process session. Set to TRUE if the session is
cross-process. Set to FALSE if the session is not cross-process.

[out] AudioVolume

Pointer to a pointer variable into which the method writes a pointer to the
ISimpleAudioVolume interface of the audio volume control object. This interface
represents the simple audio volume control for the current process. The caller is
responsible for releasing the interface, when it is no longer needed, by calling the
interface's Release method. If the Activate call fails, *AudioVolume is NULL.

Syntax

HRESULT GetSimpleAudioVolume( 
  [in]  LPCGUID            AudioSessionGuid, 
  [in]  DWORD              StreamFlags, 
  [out] ISimpleAudioVolume **AudioVolume 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

AUDCLNT_E_NOT_INITIALIZED The audio stream has not been successfully initialized.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_SERVICE_NOT_RUNNING The Windows audio service is not running.

E_POINTER Parameter AudioVolume is NULL.

E_MEMORY Out of memory.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionManager Interface

ISimpleAudioVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


IAudioSessionManager2 interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionManager2 interface enables an application to manage submixes for
the audio device.

To a get a reference to an IAudioSessionManager2 interface, the application must
activate it on the audio device by following these steps:

1. Use one of the techniques described on the IMMDevice interface page to obtain a
reference to the IMMDevice interface for an audio endpoint device.

2. Call the IMMDevice::Activate method with parameter iid set to
IID_IAudioSessionManager2.

When the application wants to release the IAudioSessionManager2 interface instance,
the application must call the interface's Release method.

The application thread that uses this interface must be initialized for COM. For more
information about COM initialization, see the description of the CoInitializeEx function
in the Windows SDK documentation.

The IAudioSessionManager2 interface inherits from IAudioSessionManager.
IAudioSessionManager2 also has these types of members:

The IAudioSessionManager2 interface has these methods.

 

IAudioSessionManager2::GetSessionEnumerator  

The GetSessionEnumerator method gets a pointer to the audio session enumerator object.

IAudioSessionManager2::RegisterDuckNotification  

The RegisterDuckNotification method registers the application with the session manager to
receive ducking notifications.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager


 

IAudioSessionManager2::RegisterSessionNotification  

The RegisterSessionNotification method registers the application to receive a notification when a
session is created.

IAudioSessionManager2::UnregisterDuckNotification  

The UnregisterDuckNotification method deletes a previous registration by the application to
receive notifications.

IAudioSessionManager2::UnregisterSessionNotification  

The UnregisterSessionNotification method deletes the registration to receive a notification when a
session is created.

An application can use this interface to perform the following tasks:

Register to receive ducking notifications.
Register to receive a notification when a session is created.
Enumerate sessions on the audio device that was used to get the interface pointer.

This interface supports custom implementations for stream attenuation or ducking, a
new feature in Windows 7. An application playing a media stream can make the it
behave differently when a new communication stream is opened on the default
communication device. For example, the original media stream can be paused while the
new communication stream is open. For more information about this feature, see Using
a Communication Device.

An application that manages the media streams and wants to provide a custom ducking
implementation, must register to receive notifications when session events occur. For
stream attenuation, a session event is raised by the system when a communication
stream is opened or closed on the default communication device. For more information,
see Providing a Custom Ducking Behavior.

The following example code shows how to get a reference to the
IAudioSessionManager2 interface of the audio device.

C++

Remarks

Examples

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/providing-a-custom-ducking-experience


   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

HRESULT CreateSessionManager(IAudioSessionManager2** ppSessionManager) 
{ 
  
    HRESULT hr = S_OK; 
     
    IMMDevice* pDevice = NULL; 
    IMMDeviceEnumerator* pEnumerator = NULL; 
    IAudioSessionManager2* pSessionManager = NULL; 

    // Create the device enumerator. 
    CHECK_HR( hr = CoCreateInstance( 
        __uuidof(MMDeviceEnumerator),  
        NULL, CLSCTX_ALL,  
        __uuidof(IMMDeviceEnumerator),  
        (void**)&pEnumerator)); 

    // Get the default audio device. 
    CHECK_HR( hr = pEnumerator->GetDefaultAudioEndpoint( 
                    eRender, eConsole, &pDevice)); 

    // Get the session manager. 
    CHECK_HR( hr = pDevice->Activate( 
        __uuidof(IAudioSessionManager2), CLSCTX_ALL, 
        NULL, (void**)&pSessionManager)); 

    // Return the pointer to the caller. 
    *(ppSessionManager) = pSessionManager; 
    (*ppSessionManager)->AddRef(); 

done: 

    // Clean up. 
    SAFE_RELEASE(pSessionManager); 
    SAFE_RELEASE(pEnumerator); 
    SAFE_RELEASE(pDevice); 

    return hr; 
} 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

IAudioSessionManager

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager


IAudioSessionManager2::GetSessionEnu
merator method (audiopolicy.h)
Article10/13/2021

The GetSessionEnumerator method gets a pointer to the audio session enumerator
object.

C++

[out] SessionEnum

Receives a pointer to the IAudioSessionEnumerator interface of the session enumerator
object that the client can use to enumerate audio sessions on the audio device. Through
this method, the caller obtains a counted reference to the interface. The caller is
responsible for releasing the interface, when it is no longer needed, by calling the
interface's Release method.

If the method succeeds, it returns S_OK.

The session manager maintains a collection of audio sessions that are active on the
audio device by querying the audio engine. GetSessionEnumerator creates a session
control for each session in the collection. To get a reference to the IAudioSessionControl
interface of the session in the enumerated collection, the application must call
IAudioSessionEnumerator::GetSession. For a code example, see
IAudioSessionEnumerator Interface.

Syntax

HRESULT GetSessionEnumerator( 
  [out] IAudioSessionEnumerator **SessionEnum 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-getsessionidentifier
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The session enumerator might not be aware of the new sessions that are reported
through IAudioSessionNotification. So if an application exclusively relies on the session
enumerator for getting all the sessions for an audio endpoint, the results might not be
accurate. To work around this, the application should manually maintain a list. For more
information, see IAudioSessionEnumerator.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionManager2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2


IAudioSessionManager2::RegisterDuckN
otification method (audiopolicy.h)
Article10/05/2021

The RegisterDuckNotification method registers the application with the session
manager to receive ducking notifications.

C++

sessionID

Pointer to a null-terminated string that contains a session instance identifier.
Applications that are playing a media stream and want to provide custom stream
attenuation or ducking behavior, pass their own session instance identifier. For more
information, see Remarks.

Other applications that do not want to alter their streams but want to get all the
ducking notifications must pass NULL.

duckNotification

Pointer to the application's implementation of the IAudioVolumeDuckNotification
interface. The implementation is called when ducking events are raised by the audio
system and notifications are sent to the registered applications.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

Syntax

HRESULT RegisterDuckNotification(
  LPCWSTR                      sessionID, 
  IAudioVolumeDuckNotification *duckNotification 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification


E_POINTER duckNotification is NULL.

E_OUTOFMEMORY Internal object could not be created due to insufficient
memory.

Stream Attenuation or ducking is a new feature in Windows 7. An application playing a
media stream can make the stream behave differently when a new communication
stream is opened on the default communication device. For example, the original media
stream can be paused while the new communication stream is open. To provide this
custom implementation for stream attenuation, the application can opt out of the
default stream attenuation experience by calling
IAudioSessionControl::SetDuckingPreference and then register itself to receive
notifications when session events occur. For stream attenuation, a session event is raised
by the system when a communication stream is opened or closed on the default
communication device. For more information about this feature, see Getting Ducking
Events.

To begin receiving notifications, the application calls the RegisterDuckNotification
method to register its IAudioVolumeDuckNotification interface with the session
manager. When the application no longer requires notifications, it calls the
IAudioSessionManager2::UnregisterDuckNotification method to delete the registration.

The application receives notifications about the ducking events through the methods of
the IAudioVolumeDuckNotification interface. The application implements
IAudioVolumeDuckNotification. After the registration call has succeeded, the system
calls the methods of this interface when session events occur.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-setduckingpreference
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/handling-audio-ducking-events-from-communication-devices
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-unregisterducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionManager2

Using a Communication Device

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


IAudioSessionManager2::RegisterSessio
nNotification method (audiopolicy.h)
Article10/05/2021

The RegisterSessionNotification method registers the application to receive a
notification when a session is created.

C++

SessionNotification

A pointer to the application's implementation of the IAudioSessionNotification interface.
If the method call succeeds, it calls the AddRef method on the application's
IAudioSessionNotification interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER SessionNotification is NULL.

E_OUTOFMEMORY Internal object could not be created due to insufficient
memory.

The application can register to receive a notification when a session is created, through
the methods of the IAudioSessionNotification interface. The application implements the

Syntax

HRESULT RegisterSessionNotification( 
  IAudioSessionNotification *SessionNotification 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification


IAudioSessionNotification interface. The methods defined in this interface receive
callbacks from the system when a session is created. For example code that shows how
to implement this interface, see

IAudioSessionNotification Interface.

To begin receiving notifications, the application calls the
IAudioSessionManager2::RegisterSessionNotification method to register its
IAudioSessionNotification interface. When the application no longer requires
notifications, it calls the IAudioSessionManager2::UnregisterSessionNotification method
to delete the registration.

 

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

） Important

You must call IAudioSessionEnumerator::GetCount to begin receiving notifications.
The session enumeration API discards new session notifications until the
application has first retrieved the list of existing sessions. This is to prevent a race
condition that can occur when a session notification arrives while the application
using the session APIs is starting up. Calling GetCount triggers the enumeration API
to begin sending session notifications.

Note  Make sure that the application initializes COM with Multithreaded Apartment
(MTA) model by calling CoInitializeEx(NULL, COINIT_MULTITHREADED)  in a non-UI
thread. If MTA is not initialized, the application does not receive session
notifications from the session manager. Threads that run the user interface of an
application should be initialized apartment threading model.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-unregistersessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionenumerator-getcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionManager2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2


IAudioSessionManager2::UnregisterDuc
kNotification method (audiopolicy.h)
Article10/05/2021

The UnregisterDuckNotification method deletes a previous registration by the
application to receive notifications.

C++

duckNotification

Pointer to the IAudioVolumeDuckNotification interface that is implemented by the
application. Pass the same interface pointer that was specified to the session manager in
a previous call to the IAudioSessionManager2::RegisterDuckNotification method. If the
UnregisterDuckNotification method succeeds, it calls the Release method on the
application's IAudioVolumeDuckNotification interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER duckNotification is NULL.

The application calls this method when it no longer needs to receive notifications. The
UnregisterDuckNotification method removes the registration of an

Syntax

HRESULT UnregisterDuckNotification( 
  IAudioVolumeDuckNotification *duckNotification 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registerducknotification


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioVolumeDuckNotification interface that the application previously registered with
the session manager by calling the IAudioSessionManager2::RegisterDuckNotification
method.

After the application calls UnregisterDuckNotification, any pending events are not
reported to the application.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Default Ducking Experience

Getting Ducking Events

IAudioSessionManager2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registerducknotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/stream-attenuation
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/handling-audio-ducking-events-from-communication-devices
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2


IAudioSessionManager2::UnregisterSess
ionNotification method (audiopolicy.h)
Article10/05/2021

The UnregisterSessionNotification method deletes the registration to receive a
notification when a session is created.

C++

SessionNotification

A pointer to the application's implementation of the IAudioSessionNotification interface.
Pass the same interface pointer that was specified to the session manager in a previous
call to IAudioSessionManager2::RegisterSessionNotification to register for notification.

If the UnregisterSessionNotification method succeeds, it calls the Release method on
the application's IAudioSessionNotification interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return value Description

E_POINTER SessionNotification is NULL.

The application calls this method when it no longer needs to receive notifications. The
UnregisterSessionNotification method removes the registration of an

Syntax

HRESULT UnregisterSessionNotification( 
  IAudioSessionNotification *SessionNotification 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registersessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioSessionNotification interface that the application previously registered with the
session manager by calling the IAudioSessionControl::RegisterAudioSessionNotification
method.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionManager2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-registeraudiosessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2


IAudioSessionNotification interface
(audiopolicy.h)
Article10/05/2021

The IAudioSessionNotification interface provides notification when an audio session is
created.

The IAudioSessionNotification interface inherits from the IUnknown interface.
IAudioSessionNotification also has these types of members:

The IAudioSessionNotification interface has these methods.

 

IAudioSessionNotification::OnSessionCreated  

The OnSessionCreated method notifies the registered processes that the audio session has been
created.

Unlike the other WASAPI interfaces, which are implemented by the WASAPI system
component, the IAudioSessionNotification interface is implemented by the application.
To receive event notifications, the application passes to the
IAudioSessionManager2::RegisterSessionNotification method a pointer to its
IAudioSessionNotification implementation .

After registering its IAudioSessionNotification interface, the application receives event
notifications in the form of callbacks through the methods in the interface.

When the application no longer needs to receive notifications, it calls the
IAudioSessionManager2::UnregisterSessionNotification method. This method removes
the registration of an IAudioSessionNotification interface that the application
previously registered.

Inheritance

Methods

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registersessionnotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-unregistersessionnotification


The application must not register or unregister notification callbacks during an event
callback.

The session enumerator might not be aware of the new sessions that are reported
through IAudioSessionNotification. So if an application exclusively relies on the session
enumerator for getting all the sessions for an audio endpoint, the results might not be
accurate. To work around this, the application should manually maintain a list. For more
information, see IAudioSessionEnumerator.

 

The following code example shows a sample implementation of the
IAudioSessionNotification interface.

C++

Note  Make sure that the application initializes COM with Multithreaded Apartment
(MTA) model by calling CoInitializeEx(NULL, COINIT_MULTITHREADED)  in a non-UI
thread. If MTA is not initialized, the application does not receive session
notifications from the session manager. Threads that run the user interface of an
application should be initialized apartment threading model.

Examples

class CSessionNotifications: public IAudioSessionNotification 
{ 
private: 

    LONG             m_cRefAll; 
    HWND m_hwndMain; 

    ~CSessionManager(){}; 

public: 

    CSessionManager(HWND hWnd):  
    m_cRefAll(1), 
    m_hwndMain (hWnd) 

    {} 

    // IUnknown 
    HRESULT STDMETHODCALLTYPE QueryInterface(REFIID riid, void **ppv)   
    {     
        if (IID_IUnknown == riid)
        { 

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionenumerator


   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

            AddRef(); 
            *ppvInterface = (IUnknown*)this; 
        } 
        else if (__uuidof(IAudioSessionNotification) == riid) 
        { 
            AddRef(); 
            *ppvInterface = (IAudioSessionNotification*)this; 
        } 
        else 
        { 
            *ppvInterface = NULL; 
            return E_NOINTERFACE; 
        } 
        return S_OK; 
    } 
     
    ULONG STDMETHODCALLTYPE AddRef() 
    { 
        return InterlockedIncrement(&m_cRefAll); 
    } 
      
    ULONG STDMETHODCALLTYPE Release)() 
    { 
        ULONG ulRef = InterlockedDecrement(&m_cRefAll); 
        if (0 == ulRef) 
        { 
            delete this; 
        } 
        return ulRef; 
    } 

    HRESULT OnSessionCreated(IAudioSessionControl *pNewSession) 
    { 
        if (pNewSession) 
        { 
            PostMessage(m_hwndMain, WM_SESSION_CREATED, 0, 0); 
        } 
    } 
}; 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


IAudioSessionNotification::OnSessionCr
eated method (audiopolicy.h)
Article10/13/2021

The OnSessionCreated method notifies the registered processes that the audio session
has been created.

C++

[in] NewSession

Pointer to the IAudioSessionControl interface of the audio session that was created.

If the method succeeds, it returns S_OK.

After registering its IAudioSessionNotification interface, the application receives event
notifications in the form of callbacks through the methods of the interface.

The audio engine calls OnSessionCreated when a new session is activated on the device
endpoint. This method is called from the session manager thread. This method must
take a reference to the session in the NewSession parameter if it wants to keep the
reference after this call completes.

Syntax

HRESULT OnSessionCreated( 
  [in] IAudioSessionControl *NewSession 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessioncontrol
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioSessionNotification

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionnotification


IAudioVolumeDuckNotification
interface (audiopolicy.h)
Article10/05/2021

The IAudioVolumeDuckNotification interface is used to by the system to send
notifications about stream attenuation changes.Stream Attenuation, or ducking, is a
feature introduced in Windows 7, where the system adjusts the volume of a non-
communication stream when a new communication stream is opened. For more
information about this feature, see Default Ducking Experience.

The IAudioVolumeDuckNotification interface inherits from the IUnknown interface.
IAudioVolumeDuckNotification also has these types of members:

The IAudioVolumeDuckNotification interface has these methods.

 

IAudioVolumeDuckNotification::OnVolumeDuckNotification  

The OnVolumeDuckNotification method sends a notification about a pending system ducking
event.

IAudioVolumeDuckNotification::OnVolumeUnduckNotification  

The OnVolumeUnduckNotification method sends a notification about a pending system
unducking event.

If an application needs to opt out of the system attenuation experience provided by the
system, it must call IAudioSessionControl2::SetDuckingPreference and specify that
preference.

Unlike the other WASAPI interfaces, which are implemented by the WASAPI system
component, the IAudioVolumeDuckNotification interface is implemented by the
application to provide custom stream attenuation behavior. To receive event

Inheritance

Methods

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/stream-attenuation
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-setduckingpreference


notifications, the application passes to the
IAudioSessionManager2::RegisterDuckNotification method a pointer to the application's
implementation of IAudioVolumeDuckNotification.

After the application has registered its IAudioVolumeDuckNotification interface, the
session manager calls the IAudioVolumeDuckNotification implementation when it
needs to send ducking notifications. The application receives event notifications in the
form of callbacks through the methods of the interface.

When the application no longer needs to receive notifications, it calls the
IAudioSessionManager2::UnregisterDuckNotification method. The
UnregisterDuckNotification method removes the registration of an
IAudioVolumeDuckNotification interface that the application previously registered.

The application must not register or unregister notification callbacks during an event
callback.

For more information, see Implementation Considerations for Ducking Notifications.

The following example code shows a sample implementation of the
IAudioVolumeDuckNotification interface.

C++

Examples

class CDuckNotification : public IAudioVolumeDuckNotification 
{ 
    LONG            _Cref; 
    HWND            m_hwndMain; 

    CDuckNotification (HWND hWnd) :  
        _Cref(1),  
        m_hwndMain (hWnd) 
        {} 

     
    HRESULT OnVolumeDuckNotification (LPCWSTR SessionID, UINT32 
CommunicationSessionCount) 
    { 
         PostMessage(m_hwndMain, WM_VOLUME_DUCK, 0, 0); 
         return S_OK; 
    } 
    HRESULT OnVolumeUnduckNotification (LPCWSTR SessionID) 
    { 
         PostMessage(m_hwndMain, WM_VOLUME_UNDUCK, 0, 0); 

https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registerducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-unregisterducknotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/handling-audio-ducking-events-from-communication-devices


         return S_OK; 
    } 

protected: 
    ~CDuckNotification() {} 

public: 
    HRESULT QueryInterface (REFIID Iid, void** ReturnValue) 
    { 
        if (ReturnValue == NULL) 
        { 
            return E_POINTER; 
        } 
        *ReturnValue = NULL; 
        if (iid == IID_IUnknown) 
        { 
            *ReturnValue = static_cast<IUnknown *>
(static_cast<IAudioVolumeDuckNotification *>(this)); 
            AddRef(); 
        } 
        else if (iid == __uuidof(IAudioVolumeDuckNotification)) 
        { 
            *ReturnValue = static_cast<IAudioVolumeDuckNotification *>
(this); 
            AddRef(); 
        } 
        else 
        { 
            return E_NOINTERFACE; 
        } 
        return S_OK; 
    } 
    ULONG AddRef() 
    { 
        return InterlockedIncrement(&_Cref); 
    } 

    ULONG Release() 
    { 
        LONG ref = InterlockedDecrement(&_Cref); 
        if (ref == 0) 
        { 
            delete this; 
        } 
        return 0; 
    } 
}; 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

Core Audio Interfaces

Using a Communication Device

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


IAudioVolumeDuckNotification::OnVolu
meDuckNotification method
(audiopolicy.h)
Article10/13/2021

The OnVolumeDuckNotification method sends a notification about a pending system
ducking event. For more information, see Implementation considerations for ducking
notifications.

C++

[in] sessionID

A string containing the session instance identifier of the communications session that
raises the the auto-ducking event. To get the session instance identifier, call
IAudioSessionControl2::GetSessionInstanceIdentifier.

[in] countCommunicationSessions

The number of active communications sessions. If there are n sessions, the sessions are
numbered from 0 to –1.

If the method succeeds, it returns S_OK.

Syntax

HRESULT OnVolumeDuckNotification(
  [in] LPCWSTR sessionID, 
  [in] UINT32  countCommunicationSessions 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/handling-audio-ducking-events-from-communication-devices
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-getsessioninstanceidentifier


Feedback

Was this page helpful?

Get help at Microsoft Q&A

After the application registers its implementation of the IAudioVolumeDuckNotification
interface by calling IAudioSessionManager2::RegisterDuckNotification, the session
manager calls OnVolumeDuckNotification when it wants to send a notification about
when ducking begins. The application receives the event notifications in the form of
callbacks.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioVolumeDuckNotification

Using a Communication Device

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registerducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


IAudioVolumeDuckNotification::OnVolu
meUnduckNotification method
(audiopolicy.h)
Article10/13/2021

The OnVolumeUnduckNotification method sends a notification about a pending
system unducking event. For more information, see Implementation Considerations for
Ducking Notifications.

C++

[in] sessionID

A string containing the session instance identifier of the terminating communications
session that initiated the ducking. To get the session instance identifier, call
IAudioSessionControl2::GetSessionInstanceIdentifier.

If the method succeeds, it returns S_OK.

After the application registers its implementation of the IAudioVolumeDuckNotification
interface by calling IAudioSessionManager2::RegisterDuckNotification, the session
manager calls OnVolumeUnduckNotification when it wants to send a notification about
when ducking ends. The application receives the event notifications in the form of
callbacks.

Syntax

HRESULT OnVolumeUnduckNotification( 
  [in] LPCWSTR sessionID 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/handling-audio-ducking-events-from-communication-devices
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol2-getsessioninstanceidentifier
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionmanager2-registerducknotification


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header audiopolicy.h

IAudioVolumeDuckNotification

Using a Communication Device

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiovolumeducknotification
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-communication-device


Feedback

Was this page helpful?

Get help at Microsoft Q&A

audiosessiontypes.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

audiosessiontypes.h contains the following programming interfaces:

 

AUDCLNT_SHAREMODE  

The AUDCLNT_SHAREMODE enumeration defines constants that indicate whether an audio
stream will run in shared mode or in exclusive mode.

AUDIO_STREAM_CATEGORY  

Specifies the category of an audio stream.

AudioSessionState  

The AudioSessionState enumeration defines constants that indicate the current state of an audio
session.

Enumerations

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDCLNT_SHAREMODE enumeration
(audiosessiontypes.h)
Article06/02/2021

The AUDCLNT_SHAREMODE enumeration defines constants that indicate whether an
audio stream will run in shared mode or in exclusive mode.

C++

 

AUDCLNT_SHAREMODE_SHARED  
The audio stream will run in shared mode. For more information, see Remarks.

AUDCLNT_SHAREMODE_EXCLUSIVE  
The audio stream will run in exclusive mode. For more information, see Remarks.

The IAudioClient::Initialize and IAudioClient::IsFormatSupported methods use the
constants defined in the AUDCLNT_SHAREMODE enumeration.

In shared mode, the client can share the audio endpoint device with clients that run in
other user-mode processes. The audio engine always supports formats for client
streams that match the engine's mix format. In addition, the audio engine might support
another format if the Windows audio service can insert system effects into the client
stream to convert the client format to the mix format.

In exclusive mode, the Windows audio service attempts to establish a connection in
which the client has exclusive access to the audio endpoint device. In this mode, the
audio engine inserts no system effects into the local stream to aid in the creation of the

Syntax

typedef enum _AUDCLNT_SHAREMODE { 
  AUDCLNT_SHAREMODE_SHARED, 
  AUDCLNT_SHAREMODE_EXCLUSIVE 
} AUDCLNT_SHAREMODE; 

Constants

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported


Feedback

Was this page helpful?

Get help at Microsoft Q&A

connection point. Either the audio device can handle the specified format directly or the
method fails.

For more information about shared-mode and exclusive-mode streams, see User-Mode
Audio Components.

Starting with Xbox May 2021 Update, you can open an audio client in exclusive mode on
Xbox.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Header audiosessiontypes.h

Core Audio Constants

Core Audio Enumerations

IAudioClient::Initialize

IAudioClient::IsFormatSupported

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/user-mode-audio-components
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-isformatsupported


AUDIO_STREAM_CATEGORY
enumeration (audiosessiontypes.h)
Article06/02/2021

Specifies the category of an audio stream.

C++

 

AudioCategory_Other  
Other audio stream.

AudioCategory_ForegroundOnlyMedia  
Media that will only stream when the app is in the foreground. This enumeration value has been
deprecated. For more information, see the Remarks section.

AudioCategory_BackgroundCapableMedia  
Media that can be streamed when the app is in the background. This enumeration value has been
deprecated. For more information, see the Remarks section.

Syntax

typedef enum _AUDIO_STREAM_CATEGORY { 
  AudioCategory_Other, 
  AudioCategory_ForegroundOnlyMedia, 
  AudioCategory_BackgroundCapableMedia, 
  AudioCategory_Communications, 
  AudioCategory_Alerts, 
  AudioCategory_SoundEffects, 
  AudioCategory_GameEffects, 
  AudioCategory_GameMedia, 
  AudioCategory_GameChat, 
  AudioCategory_Speech, 
  AudioCategory_Movie, 
  AudioCategory_Media, 
  AudioCategory_FarFieldSpeech, 
  AudioCategory_UniformSpeech, 
  AudioCategory_VoiceTyping 
} AUDIO_STREAM_CATEGORY; 

Constants



 

AudioCategory_Communications  
Real-time communications, such as VOIP or chat.

AudioCategory_Alerts  
Alert sounds.

AudioCategory_SoundEffects  
Sound effects.

AudioCategory_GameEffects  
Game sound effects.

AudioCategory_GameMedia  
Background audio for games.

AudioCategory_GameChat  
Game chat audio. Similar to AudioCategory_Communications except that
AudioCategory_GameChat will not attenuate other streams.

AudioCategory_Speech  
Speech.

AudioCategory_Movie  
Stream that includes audio with dialog.

AudioCategory_Media  
Stream that includes audio without dialog.

AudioCategory_FarFieldSpeech  
Media is audio captured with the intent of capturing voice sources located in the ‘far field’. (Far
away from the microphone.)

AudioCategory_UniformSpeech  
Media is captured audio that requires consistent speech processing for the captured audio stream
across all Windows devices. Used by applications that process speech data using machine learning
algorithms.

AudioCategory_VoiceTyping  
Media is audio captured with the intent of enabling dictation or typing by voice.

Note that only a subset of the audio stream categories are valid for certain stream types.

Stream type Valid categories

Render stream All categories are valid.

Remarks



Feedback

Was this page helpful?

Capture stream AudioCategory_Communications, AudioCategory_Speech,
AudioCategory_Other

Loopback
stream

AudioCategory_Other

 

Games should categorize their music streams as AudioCategory_GameMedia so that
game music mutes automatically if another application plays music in the background.
Music or video applications should categorize their streams as AudioCategory_Media or
AudioCategory_Movie so they will take priority over AudioCategory_GameMedia
streams. Game audio for in-game cinematics or cutscenes, when the audio is premixed
or for creative reasons should take priority over background audio, should also be
categorized as Media or Movie.

The values AudioCategory_ForegroundOnlyMedia and
AudioCategory_BackgroundCapableMedia are deprecated. For Windows Store apps,
these values will continue to function the same when running on Windows 10 as they
did on Windows 8.1. Attempting to use these values in a Universal Windows Platform
(UWP) app, will result in compilation errors and an exception at runtime. Using these
values in a Windows desktop application built with the Windows 10 SDK the will result
in a compilation error.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Header audiosessiontypes.h (include Audioclient.h)

Core Audio Enumerations

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


AudioSessionState enumeration
(audiosessiontypes.h)
Article06/02/2021

The AudioSessionState enumeration defines constants that indicate the current state of
an audio session.

C++

 

AudioSessionStateInactive  
The audio session is inactive. (It contains at least one stream, but none of the streams in the
session is currently running.)

AudioSessionStateActive  
The audio session is active. (At least one of the streams in the session is running.)

AudioSessionStateExpired  
The audio session has expired. (It contains no streams.)

When a client opens a session by assigning the first stream to the session (by calling the
IAudioClient::Initialize method), the initial session state is inactive. The session state
changes from inactive to active when a stream in the session begins running (because
the client has called the IAudioClient::Start method). The session changes from active to
inactive when the client stops the last running stream in the session (by calling the
IAudioClient::Stop method). The session state changes to expired when the client
destroys the last stream in the session by releasing all references to the stream object.

Syntax

typedef enum _AudioSessionState { 
  AudioSessionStateInactive, 
  AudioSessionStateActive, 
  AudioSessionStateExpired 
} AudioSessionState; 

Constants

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The system volume-control program, Sndvol, displays volume controls for both active
and inactive sessions. Sndvol stops displaying the volume control for a session when the
session state changes to expired. For more information about Sndvol, see Audio
Sessions.

The IAudioSessionControl::GetState and IAudioSessionEvents::OnStateChanged methods
use the constants defined in the AudioSessionState enumeration.

For more information about session states, see Audio Sessions.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Header audiosessiontypes.h

Core Audio Constants

Core Audio Enumerations

IAudioClient::Initialize

IAudioClient::Start

IAudioClient::Stop

IAudioSessionControl::GetState

IAudioSessionEvents::OnStateChanged

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getstate
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionevents-onstatechanged
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-sessions
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-start
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessioncontrol-getstate
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nf-audiopolicy-iaudiosessionevents-onstatechanged


audiostatemonitorapi.h header
Article06/22/2023

This header is used part of the Core Audio feature. For more information, see:

Core Audio APIs

audiostatemonitorapi.h contains the following programming interfaces:

 

IAudioStateMonitor  

Provides APIs for querying the sound level of audio streams and for receiving notifications when
the sound level changes.

 

CreateCaptureAudioStateMonitor  

Creates a new instance of IAudioStateMonitor for capture streams.

CreateCaptureAudioStateMonitorForCategory  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category.

CreateCaptureAudioStateMonitorForCategoryAndDeviceId  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category and audio device ID.

CreateCaptureAudioStateMonitorForCategoryAndDeviceRole  

Creates a new instance of IAudioStateMonitor for capture streams with the specified audio
category and audio device role.

CreateRenderAudioStateMonitor  

Creates a new instance of IAudioStateMonitor for render streams.

Interfaces

Functions



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

CreateRenderAudioStateMonitorForCategory  

Creates a new instance of IAudioStateMonitor for the render streams with the specified audio
category.

CreateRenderAudioStateMonitorForCategoryAndDeviceId  

Creates a new instance of IAudioStateMonitor for the render streams with the specified audio
category and audio device ID.

CreateRenderAudioStateMonitorForCategoryAndDeviceRole  

Creates a new instance of IAudioStateMonitor for render streams with the specified audio
category and audio device role.

 

AudioStateMonitorCallback  

Occurs when the system changes the sound level of the audio streams being monitored by an
IAudioStreamStateMonitor.

 

AudioStateMonitorSoundLevel  

Callback functions

Enumerations

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AudioStateMonitorCallback callback
function (audiostatemonitorapi.h)
Article06/22/2023

Called when the system changes the sound level of the audio streams being monitored
by an IAudioStateMonitor.

C++

[in] audioStateMonitor

The IAudioStateMonitor with which the callback was registered.

[in, optional] context

A void pointer that points to context information provided by the client in the call to
IAudioStateMonitor::RegisterCallback.

None

Windows dynamically mutes or lowers the level of audio streams in response to system
events. For example, the volume of a podcast app's audio render stream may be
lowered while an alarm is ringing. Or an audio recording app may have their capture
stream muted when the app moves to the background. Register an implementation of

Syntax

AudioStateMonitorCallback Audiostatemonitorcallback; 

void Audiostatemonitorcallback( 
  [in]           IAudioStateMonitor *audioStateMonitor, 
  [in, optional] void *context 
) 
{...} 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

this callback with a call to IAudioStateMonitor::RegisterCallback to receive notifications
when the sound level for a stream changes, and then call
IAudioStateMonitor::GetSoundLevel property to determine the new current audio level.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

AudioStateMonitorSoundLevel
enumeration (audiostatemonitorapi.h)
Article06/22/2023

Specifies a sound level for audio streams being queried with a call to
IAudioStateMonitor::GetSoundLevel

C++

 

Muted  
The audio is muted.

Low  
The audio level is low.

Full  
The audio level is full.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Syntax

typedef enum AudioStateMonitorSoundLevel { 
  Muted, 
  Low, 
  Full 
} ; 

Constants

Requirements



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

CreateCaptureAudioStateMonitor
function (audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for capture streams.

C++

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Syntax

HRESULT CreateCaptureAudioStateMonitor( 
  [out] IAudioStateMonitor **audioStateMonitor 
); 

Parameters

Return value

Requirements



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateCaptureAudioStateMonitorForCat
egory function (audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for capture streams with the specified
audio stream category.

C++

[in] category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

S_OK Success.

   

Syntax

HRESULT CreateCaptureAudioStateMonitorForCategory( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [out] IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateCaptureAudioStateMonitorForCat
egoryAndDeviceId function
(audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for capture streams with the specified
audio category and audio device ID.

C++

[in] category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

[in] deviceId

The unique identifier of the audio device for which the audio state monitor is created.
The endpoint may be specified using the MMDevice ID, obtained using
IMMDevice::GetId, or by using its SWD ID, obtained using
Windows.Devices.Enumeration or Windows.Media.Devices.MediaDevice.

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Syntax

HRESULT CreateCaptureAudioStateMonitorForCategoryAndDeviceId( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [in]  PCWSTR                deviceId, 
  [out] IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/uwp/api/windows.devices.enumeration
https://learn.microsoft.com/en-us/uwp/api/windows.media.devices.mediadevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value DescriptionValue Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateCaptureAudioStateMonitorForCat
egoryAndDeviceRole function
(audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for capture streams with the specified
audio category and audio device role.

C++

category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

role

A member of the ERole enumeration specifying the audio device role for which the
audio state monitor is created.

audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

Syntax

HRESULT CreateCaptureAudioStateMonitorForCategoryAndDeviceRole( 
  AUDIO_STREAM_CATEGORY category,
  ERole                 role, 
  IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

CreateRenderAudioStateMonitor
function (audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for render streams.

C++

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Syntax

HRESULT CreateRenderAudioStateMonitor( 
  [out] IAudioStateMonitor **audioStateMonitor 
); 

Parameters

Return value

Requirements



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateRenderAudioStateMonitorForCate
gory function (audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for render streams with the specified
audio stream category.

C++

[in] category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

S_OK Success.

   

Syntax

HRESULT CreateRenderAudioStateMonitorForCategory( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [out] IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateRenderAudioStateMonitorForCate
goryAndDeviceId function
(audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for render streams with the specified
audio category and audio device ID.

C++

[in] category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

[in] deviceId

The unique identifier of the audio device for which the audio state monitor is created.
The endpoint may be specified using the MMDevice ID, obtained using
IMMDevice::GetId, or by using its SWD ID, obtained using
Windows.Devices.Enumeration or Windows.Media.Devices.MediaDevice.

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Syntax

HRESULT CreateRenderAudioStateMonitorForCategoryAndDeviceId( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [in]  PCWSTR                deviceId, 
  [out] IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/uwp/api/windows.devices.enumeration
https://learn.microsoft.com/en-us/uwp/api/windows.media.devices.mediadevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value DescriptionValue Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


CreateRenderAudioStateMonitorForCate
goryAndDeviceRole function
(audiostatemonitorapi.h)
Article06/22/2023

Creates a new instance of IAudioStateMonitor for render streams with the specified
audio category and audio device role.

C++

[in] category

A member of the AUDIO_STREAM_CATEGORY enumeration specifying the audio stream
category for which the audio state monitor is created.

[in] role

A member of the ERole enumeration specifying the audio device role for which the
audio state monitor is created.

[out] audioStateMonitor

Receives a pointer to the created IAudioStateMonitor.

Returns an HRESULT including the following values.

Value Description

Syntax

HRESULT CreateRenderAudioStateMonitorForCategoryAndDeviceRole( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [in]  ERole                 role, 
  [out] IAudioStateMonitor    **audioStateMonitor 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioStateMonitor interface
(audiostatemonitorapi.h)
Article06/22/2023

Provides APIs for querying the sound level of audio streams and for receiving
notifications when the sound level changes.

The IAudioStateMonitor interface inherits from the IUnknown interface.

The IAudioStateMonitor interface has these methods.

 

IAudioStateMonitor::GetSoundLevel  

Gets the current sound level for the audio streams associated with an IAudioStateMonitor.

IAudioStateMonitor::RegisterCallback  

Registers an implementation of AudioStateMonitorCallback that is called when the system
changes the sound level of the audio streams being monitored by an IAudioStateMonitor.

IAudioStateMonitor::UnregisterCallback  

Unregisters an AudioStateMonitorCallback previously registered with a call to
IAudioStateMonitor::RegisterCallback.

The method you use for instantiating the interface determines which audio streams are
monitored. Factory methods are provided for monitoring capture and render streams, as
well as monitoring streams based on audio category, device role, and audio device ID.

CreateCaptureAudioStateMonitor
CreateCaptureAudioStateMonitorForCategory
CreateCaptureAudioStateMonitorForCategoryAndDeviceId
CreateCaptureAudioStateMonitorForCategoryAndDeviceRole

Inheritance

Methods

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

CreateRenderAudioStateMonitor
CreateRenderAudioStateMonitorForCategory
CreateRenderAudioStateMonitorForCategoryAndDeviceId
CreateRenderAudioStateMonitorForCategoryAndDeviceRole

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

IAudioStateMonitor::GetSoundLevel
method (audiostatemonitorapi.h)
Article06/22/2023

Gets the current sound level for the audio streams associated with an
IAudioStateMonitor.

C++

A value from the AudioStateMonitorSoundLevel enumeration specifying the current
sound level for the audio stream.

Windows dynamically mutes or lowers the level of audio streams in response to system
events. For example, the volume of a podcast app's audio render stream may be
lowered while an alarm is ringing. Or an audio recording app may have their capture
stream muted when the app moves to the background. Register an implementation of
the AudioStateMonitorCallback event to receive notifications when the sound level for a
category of audio streams changes.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Syntax

AudioStateMonitorSoundLevel GetSoundLevel(); 

Return value

Remarks

Requirements



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioStateMonitor::RegisterCallback
method (audiostatemonitorapi.h)
Article06/22/2023

Registers an implementation of AudioStateMonitorCallback that is called when the
system changes the sound level of the audio streams being monitored by an
IAudioStateMonitor.

C++

[in] callback

A pointer to the AudioStateMonitorCallback function implementation.

[in, optional] context

A optional void pointer that points to context information provided by the client in the
call to IAudioStateMonitor::RegisterCallback.

[out] registration

An Int64 representing the handle to a registration. Pass this handle to
IAudioStateMonitor::UnregisterCallback to unregister the callback.

Returns an HRESULT including the following values.

Value Description

Syntax

HRESULT RegisterCallback( 
  [in]           PAudioStateMonitorCallback          callback, 
  [in, optional] void                                *context, 
  [out]          AudioStateMonitorRegistrationHandle *registration 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value Description

S_OK Success.

   

Minimum supported client Windows build 19043

Header audiostatemonitorapi.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioStateMonitor::UnregisterCallback
method (audiostatemonitorapi.h)
Article06/22/2023

Unregisters an AudioStateMonitorCallback previously registered with a call to
IAudioStateMonitor::RegisterCallback.

C++

registration

The registration handle obtained from the registration output parameter to
RegisterCallback.

None

If any callbacks are in progress, this method will block until the callbacks have
completed. This method may be called from within the callback, and in this case it will
not block.

   

Minimum supported client Windows build 19043

Syntax

void UnregisterCallback( 
  AudioStateMonitorRegistrationHandle registration 
); 

Parameters

Return value

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header audiostatemonitorapi.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


devicetopology.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

devicetopology.h contains the following programming interfaces:

 

IAudioAutoGainControl  

The IAudioAutoGainControl interface provides access to a hardware automatic gain control (AGC).

IAudioBass  

The IAudioBass interface provides access to a hardware bass-level control.

IAudioChannelConfig  

The IAudioChannelConfig interface provides access to a hardware channel-configuration control.

IAudioInputSelector  

The IAudioInputSelector interface provides access to a hardware multiplexer control (input
selector).

IAudioLoudness  

The IAudioLoudness interface provides access to a "loudness" compensation control.

IAudioMidrange  

The IAudioMidrange interface provides access to a hardware midrange-level control.

IAudioMute  

The IAudioMute interface provides access to a hardware mute control.

IAudioOutputSelector  

The IAudioOutputSelector interface provides access to a hardware demultiplexer control (output
selector).

Interfaces



 

IAudioPeakMeter  

The IAudioPeakMeter interface provides access to a hardware peak-meter control.

IAudioTreble  

The IAudioTreble interface provides access to a hardware treble-level control.

IAudioVolumeLevel  

The IAudioVolumeLevel interface provides access to a hardware volume control.

IConnector  

The IConnector interface represents a point of connection between components.

IControlChangeNotify  

The IControlChangeNotify interface provides notifications when the status of a part (connector or
subunit) changes.

IControlInterface  

The IControlInterface interface represents a control interface on a part (connector or subunit) in a
device topology. The client obtains a reference to a part's IControlInterface interface by calling the
IPart::GetControlInterface method.

IDeviceSpecificProperty  

The IDeviceSpecificProperty interface provides access to the control value of a device-specific
hardware control.

IDeviceTopology  

The IDeviceTopology interface provides access to the topology of an audio device.

IKsFormatSupport  

The IKsFormatSupport interface provides information about the audio data formats that are
supported by a software-configured I/O connection (typically a DMA channel) between an audio
adapter device and system memory.

IKsJackDescription  

The IKsJackDescription interface provides information about the jacks or internal connectors that
provide a physical connection between a device on an audio adapter and an external or internal
endpoint device (for example, a microphone or CD player).



 

IKsJackDescription2 

The IKsJackDescription2 interface provides information about the jacks or internal connectors that
provide a physical connection between a device on an audio adapter and an external or internal
endpoint device (for example, a microphone or CD player).

IKsJackSinkInformation  

The IKsJackSinkInformation interface provides access to jack sink information if the jack is
supported by the hardware.

IPart  

The IPart interface represents a part (connector or subunit) of a device topology.

IPartsList  

The IPartsList interface represents a list of parts, each of which is an object with an IPart interface
that represents a connector or subunit.

IPerChannelDbLevel  

The IPerChannelDbLevel interface represents a generic subunit control interface that provides per-
channel control over the volume level, in decibels, of an audio stream or of a frequency band in an
audio stream.

ISubunit  

The ISubunit interface represents a hardware subunit (for example, a volume control) that lies in
the data path between a client and an audio endpoint device.

 

KSJACK_DESCRIPTION  

The KSJACK_DESCRIPTION structure describes an audio jack.

KSJACK_DESCRIPTION2  

The KSJACK_DESCRIPTION2 structure describes an audio jack.To get the description of an audio
jack of a connector, call IKsJackDescription2::GetJackDescription2.

Structures



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

KSJACK_SINK_INFORMATION  

The KSJACK_SINK_INFORMATION structure stores information about an audio jack sink.

LUID  

The LUID structure stores the video port identifier. This structure is stored in the PortId member of
the KSJACK_SINK_INFORMATION structure.

 

ConnectorType  

The ConnectorType enumeration indicates the type of connection that a connector is part of.

DataFlow  

The DataFlow enumeration indicates the data-flow direction of an audio stream through a
connector.

KSJACK_SINK_CONNECTIONTYPE  

The KSJACK_SINK_CONNECTIONTYPE enumeration defines constants that specify the type of
connection. These values are used in the KSJACK_SINK_INFORMATION structure that stores
information about an audio jack sink.

PartType  

The PartType enumeration defines constants that indicate whether a part in a device topology is a
connector or subunit.

Enumerations

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ConnectorType enumeration
(devicetopology.h)
Article01/31/2022

The ConnectorType enumeration indicates the type of connection that a connector is
part of.

C++

 

Unknown_Connector  
Value: 0 
The connector is part of a connection of unknown type.

Physical_Internal  
The connector is part of a physical connection to an auxiliary device that is installed inside the
system chassis (for example, a connection to the analog output of an internal CD player, or to a
built-in microphone or built-in speakers in a laptop computer).

Physical_External  
The connector is part of a physical connection to an external device. That is, the connector is a
user-accessible jack that connects to a microphone, speakers, headphones, S/PDIF input or output
device, or line input or output device.

Software_IO  
The connector is part of a software-configured I/O connection (typically a DMA channel) between
system memory and an audio hardware device on an audio adapter.

Syntax

typedef enum __MIDL___MIDL_itf_devicetopology_0000_0000_0013 { 
  Unknown_Connector = 0, 
  Physical_Internal, 
  Physical_External, 
  Software_IO, 
  Software_Fixed, 
  Network 
} ConnectorType; 

Constants



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

Software_Fixed  
The connector is part of a permanent connection that is fixed and cannot be configured under
software control. This type of connection is typically used to connect two audio hardware devices
that reside on the same adapter.

Network  
The connector is part of a connection to a network.

The IConnector::GetType method uses the constants defined in the ConnectorType
enumeration.

For more information about connector types, see Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header devicetopology.h

Core Audio Constants

Core Audio Enumerations

IConnector::GetType

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-gettype
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-gettype


DataFlow enumeration
(devicetopology.h)
Article01/31/2022

The DataFlow enumeration indicates the data-flow direction of an audio stream through
a connector.

C++

 

In  
Value: 0 
Input stream. The audio stream flows into the device through the connector.

Out  
Output stream. The audio stream flows out of the device through the connector.

The IConnector::GetDataFlow method uses the constants defined in the DataFlow
enumeration.

The topology of a rendering or capture device on an audio adapter typically has one or
more connectors with a data-flow direction of "In" through which audio data enters the
device, and one or more connectors with a data-flow direction of "Out" through which
audio data exits the device. For example, a typical rendering device on an adapter has a
connector with data-flow direction "In" through which the Windows audio engine
streams PCM data into the device. The same device has a connector with data-flow
direction "Out" through which the device transmits an audio signal to speakers or
headphones.

Syntax

typedef enum __MIDL___MIDL_itf_devicetopology_0000_0000_0011 { 
  In = 0, 
  Out 
} DataFlow; 

Constants

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getdataflow


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The topology of a rendering endpoint device (for example, headphones) has a single
connector with data-flow direction "In" through which audio data (in the form of an
analog signal) enters the device.

The topology of a capture endpoint device (for example, a microphone) has a single
connector with data-flow direction "Out" through which audio data exits the device.

For more information, see Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header devicetopology.h

Core Audio Constants

Core Audio Enumerations

IConnector::GetDataFlow

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getdataflow


IAudioAutoGainControl interface
(devicetopology.h)
Article07/22/2021

The IAudioAutoGainControl interface provides access to a hardware automatic gain
control (AGC). The client obtains a reference to the IAudioAutoGainControl interface of
a subunit by calling the IPart::Activate method with parameter refiid set to REFIID
IID_IAudioAutoGainControl. The call to IPart::Activate succeeds only if the subunit
supports the IAudioAutoGainControl interface. Only a subunit object that represents a
hardware AGC function will support this interface.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioAutoGainControl interface provides
convenient access to the KSPROPERTY_AUDIO_AGC property of a subunit that has a
subtype GUID value of KSNODETYPE_AGC. To obtain the subtype GUID of a subunit, call
the IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioAutoGainControl interface inherits from the IUnknown interface.
IAudioAutoGainControl also has these types of members:

The IAudioAutoGainControl interface has these methods.

 

IAudioAutoGainControl::GetEnabled  

The GetEnabled method gets the current state (enabled or disabled) of the AGC.

IAudioAutoGainControl::SetEnabled  

The SetEnabled method enables or disables the AGC.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioAutoGainControl::GetEnabled
method (devicetopology.h)
Article10/13/2021

The GetEnabled method gets the current state (enabled or disabled) of the AGC.

C++

[out] pbEnabled

Pointer to a BOOL variable into which the method writes the current AGC state. If the
state is TRUE, AGC is enabled. If FALSE, AGC is disabled.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pbEnabled is NULL.

A disabled AGC operates in pass-through mode. In this mode, the audio stream passes
through the AGC without modification.

Syntax

HRESULT GetEnabled( 
  [out] BOOL *pbEnabled 
); 

Parameters

Return value

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioAutoGainControl Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol


IAudioAutoGainControl::SetEnabled
method (devicetopology.h)
Article10/13/2021

The SetEnabled method enables or disables the AGC.

C++

[in] bEnable

The new AGC state. If this parameter is TRUE (nonzero), the method enables AGC. If
FALSE, it disables AGC.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetEnabled call changes the state of the AGC control, all
clients that have registered IControlChangeNotify interfaces with that control receive
notifications. In its implementation of the OnNotify method, a client can inspect the
event-context GUID to discover whether it or another client is the source of the control-
change event. If the caller supplies a NULL pointer for this parameter, the client's
notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT SetEnabled( 
  [in] BOOL    bEnable, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

A disabled AGC control operates in pass-through mode. In this mode, the audio stream
passes through the control without modification.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioAutoGainControl Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol


Feedback

Was this page helpful?

IAudioBass interface (devicetopology.h)
Article02/16/2023

The IAudioBass interface provides access to a hardware bass-level control. The client
obtains a reference to the IAudioBass interface of a subunit by calling the IPart::Activate
method with parameter refiid set to REFIID IID_IAudioBass. The call to IPart::Activate
succeeds only if the subunit supports the IAudioBass interface. Only a subunit object
that represents a hardware function for controlling the level of the bass frequencies in
each channel will support this interface.

The IAudioBass interface inherits from the IPerChannelDbLevel interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

IPerChannelDbLevel Interface

Inheritance

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IAudioChannelConfig interface
(devicetopology.h)
Article07/18/2023

The IAudioChannelConfig interface provides access to a hardware channel-
configuration control. The client obtains a reference to the IAudioChannelConfig
interface of a subunit by calling the IPart::Activate method with parameter refiid set to
REFIID IID_IAudioChannelConfig. The call to IPart::Activate succeeds only if the subunit
supports the IAudioChannelConfig interface. Only a subunit object that represents a
hardware channel-configuration control will support this interface.

A client of the IAudioChannelConfig interface programs a hardware channel-
configuration control by writing a channel-configuration mask to the control. The mask
specifies the assignment of audio channels to speakers. For more information about
channel-configuration masks, see KSPROPERTY_AUDIO_CHANNEL_CONFIG.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioChannelConfig interface provides
convenient access to the KSPROPERTY_AUDIO_CHANNEL_CONFIG property of a subunit
that has a subtype GUID value of KSNODETYPE_3D_EFFECTS, KSNODETYPE_DAC,
KSNODETYPE_VOLUME, or KSNODETYPE_PROLOGIC_DECODER. To obtain the subtype
GUID of a subunit, call the IPart::GetSubType method. For more information about KS
properties and KS node types, see the Windows DDK documentation.

The IAudioChannelConfig interface inherits from the IUnknown interface.
IAudioChannelConfig also has these types of members:

The IAudioChannelConfig interface has these methods.

 

IAudioChannelConfig::GetChannelConfig

The GetChannelConfig method gets the current channel-configuration mask from a channel-
configuration control.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/ksproperty-audio-channel-config
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioChannelConfig::SetChannelConfig

The SetChannelConfig method sets the channel-configuration mask in a channel-configuration
control.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioChannelConfig::GetChannelConfi
g method (devicetopology.h)
Article10/13/2021

The GetChannelConfig method gets the current channel-configuration mask from a
channel-configuration control.

C++

[out] pdwConfig

Pointer to a DWORD variable into which the method writes the current channel-
configuration mask value.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pdwConfig is NULL.

For information about channel-configuration masks, see the discussion of the
KSPROPERTY_AUDIO_CHANNEL_CONFIG property in the Windows DDK documentation.

Syntax

HRESULT GetChannelConfig( 
  [out] DWORD *pdwConfig 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/ksproperty-audio-channel-config


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioChannelConfig Interface

IAudioChannelConfig::SetChannelConfig

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiochannelconfig-setchannelconfig


IAudioChannelConfig::SetChannelConfig
method (devicetopology.h)
Article10/13/2021

The SetChannelConfig method sets the channel-configuration mask in a channel-
configuration control.

C++

[in] dwConfig

The channel-configuration mask.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetChannelConfig call changes the state of the channel-
configuration control, all clients that have registered IControlChangeNotify interfaces
with that control receive notifications. In its implementation of the OnNotify method, a
client can inspect the event-context GUID to discover whether it or another client is the
source of the control-change event. If the caller supplies a NULL pointer for this
parameter, the client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT SetChannelConfig( 
  [in] DWORD   dwConfig, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

For information about channel-configuration masks, see the discussion of the
KSPROPERTY_AUDIO_CHANNEL_CONFIG property in the Windows DDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioChannelConfig Interface

IAudioChannelConfig::GetChannelConfig

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/ksproperty-audio-channel-config
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiochannelconfig-getchannelconfig


IAudioInputSelector interface
(devicetopology.h)
Article07/22/2021

The IAudioInputSelector interface provides access to a hardware multiplexer control
(input selector). The client obtains a reference to the IAudioInputSelector interface of a
subunit by calling the IPart::Activate method with parameter refiid set to REFIID
IID_IAudioInputSelector. The call to IPart::Activate succeeds only if the subunit supports
the IAudioInputSelector interface. Only a subunit object that represents a hardware
input selector will support this interface.

Each input of an input selector is identified by the local ID of the part (a connector or
subunit of a device topology) that has a direct link to the input. A local ID is a number
that uniquely identifies a part among all the parts in a device topology.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioInputSelector interface provides
convenient access to the KSPROPERTY_AUDIO_MUX_SOURCE property of a subunit that
has a subtype GUID value of KSNODETYPE_MUX. To obtain the subtype GUID of a
subunit, call the IPart::GetSubType method. For more information about KS properties
and KS node types, see the Windows DDK documentation.

For a code example that uses the IAudioInputSelector interface, see the implementation
of the SelectCaptureDevice function in Device Topologies.

The IAudioInputSelector interface inherits from the IUnknown interface.
IAudioInputSelector also has these types of members:

The IAudioInputSelector interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioInputSelector::GetSelection  

The GetSelection method gets the local ID of the part that is connected to the selector input that
is currently selected.

IAudioInputSelector::SetSelection  

The SetSelection method selects one of the inputs of the input selector.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioInputSelector::GetSelection
method (devicetopology.h)
Article10/13/2021

The GetSelection method gets the local ID of the part that is connected to the selector
input that is currently selected.

C++

[out] pnIdSelected

Pointer to a UINT variable into which the method writes the local ID of the part that
directly links to the currently selected selector input.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pnIdSelected is NULL.

A local ID is a number that uniquely identifies a part among all parts in a device
topology. To obtain a pointer to the IPart interface of a part from its local ID, call the
IDeviceTopology::GetPartById method.

Syntax

HRESULT GetSelection( 
  [out] UINT *pnIdSelected 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioInputSelector Interface

IDeviceTopology::GetPartById

IPart Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioinputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IAudioInputSelector::SetSelection
method (devicetopology.h)
Article10/13/2021

The SetSelection method selects one of the inputs of the input selector.

C++

[in] nIdSelect

The new selector input. The caller should set this parameter to the local ID of a part that
has a direct link to one of the selector inputs.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetSelection call changes the state of the input-selector
control, all clients that have registered IControlChangeNotify interfaces with that control
receive notifications. In its implementation of the OnNotify method, a client can inspect
the event-context GUID to discover whether it or another client is the source of the
control-change event. If the caller supplies a NULL pointer for this parameter, the
client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nIdSelect is not the local ID of a part at a

Syntax

HRESULT SetSelection( 
  [in] UINT    nIdSelect, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

selector input.

E_OUTOFMEMORY Out of memory.

A local ID is a number that uniquely identifies a part among all parts in a device
topology. To obtain the local ID of a part, call the IPart::GetLocalId method on the part
object.

For a code example that calls the SetSelection method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioInputSelector Interface

IPart::GetLocalId

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioinputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid


IAudioLoudness interface
(devicetopology.h)
Article07/22/2021

The IAudioLoudness interface provides access to a "loudness" compensation control.
The client obtains a reference to the IAudioLoudness interface of a subunit by calling
the IPart::Activate method with parameter refiid set to REFIID IID_IAudioLoudness. The
call to IPart::Activate succeeds only if the subunit supports the IAudioLoudness
interface. Only a subunit object that represents a hardware loudness control function
will support this interface.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioLoudness interface provides convenient
access to the KSPROPERTY_AUDIO_LOUDNESS property of a subunit that has a subtype
GUID value of KSNODETYPE_LOUDNESS. To obtain the subtype GUID of a subunit, call
the IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioLoudness interface inherits from the IUnknown interface. IAudioLoudness
also has these types of members:

The IAudioLoudness interface has these methods.

 

IAudioLoudness::GetEnabled  

The GetEnabled method gets the current state (enabled or disabled) of the loudness control.

IAudioLoudness::SetEnabled  

The SetEnabled method enables or disables the loudness control.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioLoudness::GetEnabled method
(devicetopology.h)
Article10/13/2021

The GetEnabled method gets the current state (enabled or disabled) of the loudness
control.

C++

[out] pbEnabled

Pointer to a BOOL variable into which the method writes the current loudness state. If
the state is TRUE, loudness is enabled. If FALSE, loudness is disabled.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pbEnabled is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT GetEnabled( 
  [out] BOOL *pbEnabled 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header devicetopology.h

IAudioLoudness Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioloudness


IAudioLoudness::SetEnabled method
(devicetopology.h)
Article10/13/2021

The SetEnabled method enables or disables the loudness control.

C++

[in] bEnable

The new loudness state. If bEnable is TRUE (nonzero), the method enables loudness. If
FALSE, it disables loudness.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetEnabled call changes the state of the loudness control,
all clients that have registered IControlChangeNotify interfaces with that control receive
notifications. In its implementation of the OnNotify method, a client can inspect the
event-context GUID to discover whether it or another client is the source of the control-
change event. If the caller supplies a NULL pointer for this parameter, the client's
notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT SetEnabled( 
  [in] BOOL    bEnable, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioLoudness Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioloudness


IAudioMidrange interface
(devicetopology.h)
Article02/16/2023

The IAudioMidrange interface provides access to a hardware midrange-level control.
The client obtains a reference to the IAudioMidrange interface of a subunit by calling
the IPart::Activate method with parameter refiid set to REFIID IID_IAudioMidrange. The
call to IPart::Activate succeeds only if the subunit supports the IAudioMidrange
interface. Only a subunit object that represents a hardware function for controlling the
level of the mid-range frequencies in each channel will support this interface.

The IAudioMidrange interface provides per-channel controls for setting and getting the
gain or attenuation level of the midrange frequencies in the audio stream. If a
midrange-level hardware control can only attenuate the channels in the audio stream,
then the maximum midrange level for any channel is 0 dB. If a midrange-level control
can provide gain (amplification), then the maximum midrange level is greater than 0 dB.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioMidrange interface provides convenient
access to the KSPROPERTY_AUDIO_MID property of a subunit that has a subtype GUID
value of KSNODETYPE_TONE. To obtain the subtype GUID of a subunit, call the
IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioMidrange interface inherits from the IPerChannelDbLevel interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Inheritance

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

DeviceTopology API

IPart::Activate

IPerChannelDbLevel Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel


IAudioMute interface
(devicetopology.h)
Article07/22/2021

The IAudioMute interface provides access to a hardware mute control. The client
obtains a reference to the IAudioMute interface of a subunit by calling the
IPart::Activate method with parameter refiid set to REFIID IID_IAudioMute. The call to
IPart::Activate succeeds only if the subunit supports the IAudioMute interface. Only a
subunit object that represents a hardware mute control function will support this
interface.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioMute interface provides convenient access
to the KSPROPERTY_AUDIO_MUTE property of a subunit that has a subtype GUID value
of KSNODETYPE_MUTE. To obtain the subtype GUID of a subunit, call the
IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioMute interface inherits from the IUnknown interface. IAudioMute also has
these types of members:

The IAudioMute interface has these methods.

 

IAudioMute::GetMute  

The GetMute method gets the current state (enabled or disabled) of the mute control.

IAudioMute::SetMute  

The SetMute method enables or disables the mute control.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioMute::GetMute method
(devicetopology.h)
Article10/13/2021

The GetMute method gets the current state (enabled or disabled) of the mute control.

C++

[out] pbMuted

Pointer to a BOOL variable into which the method writes the current state of the mute
control. If the state is TRUE, muting is enabled. If FALSE, it is disabled.

Return code Description

E_POINTER Pointer pbMuted is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Syntax

HRESULT GetMute( 
  [out] BOOL *pbMuted 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioMute Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomute


IAudioMute::SetMute method
(devicetopology.h)
Article10/13/2021

The SetMute method enables or disables the mute control.

C++

[in] bMuted

The new muting state. If bMuted is TRUE (nonzero), the method enables muting. If
FALSE, the method disables muting.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetMute call changes the state of the mute control, all
clients that have registered IControlChangeNotify interfaces with that control receive
notifications. In its implementation of the OnNotify method, a client can inspect the
event-context GUID to discover whether it or another client is the source of the control-
change event. If the caller supplies a NULL pointer for this parameter, the client's
notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT SetMute( 
  [in] BOOL    bMuted, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioMute Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomute


IAudioOutputSelector interface
(devicetopology.h)
Article07/22/2021

The IAudioOutputSelector interface provides access to a hardware demultiplexer
control (output selector). The client obtains a reference to the IAudioOutputSelector
interface of a subunit by calling the IPart::Activate method with parameter refiid set to
REFIID IID_IAudioOutputSelector. The call to IPart::Activate succeeds only if the subunit
supports the IAudioOutputSelector interface. Only a subunit object that represents a
hardware output selector will support this interface.

Each output of an output selector is identified by the local ID of the part (a connector or
subunit of a device topology) with a direct link to the output. A local ID is a number that
uniquely identifies a part among all the parts in a device topology.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioOutputSelector interface provides
convenient access to the KSPROPERTY_AUDIO_DEMUX_DEST property of a subunit that
has a subtype GUID value of KSNODETYPE_DEMUX. To obtain the subtype GUID of a
subunit, call the IPart::GetSubType method. For more information about KS properties
and KS node types, see the Windows DDK documentation.

The IAudioOutputSelector interface inherits from the IUnknown interface.
IAudioOutputSelector also has these types of members:

The IAudioOutputSelector interface has these methods.

 

IAudioOutputSelector::GetSelection  

The GetSelection method gets the local ID of the part that is connected to the selector output that
is currently selected.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IAudioOutputSelector::SetSelection  

The SetSelection method selects one of the outputs of the output selector.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioOutputSelector::GetSelection
method (devicetopology.h)
Article10/13/2021

The GetSelection method gets the local ID of the part that is connected to the selector
output that is currently selected.

C++

[out] pnIdSelected

Pointer to a UINT variable into which the method writes the local ID of the part that has
a direct link to the currently selected selector output.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pnIdSelected is NULL.

A local ID is a number that uniquely identifies a part among all parts in a device
topology. To obtain a pointer to the IPart interface of a part from its local ID, call the
IDeviceTopology::GetPartById method.

Syntax

HRESULT GetSelection( 
  [out] UINT *pnIdSelected 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioOutputSelector Interface

IDeviceTopology::GetPartById

IPart Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiooutputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IAudioOutputSelector::SetSelection
method (devicetopology.h)
Article10/13/2021

The SetSelection method selects one of the outputs of the output selector.

C++

[in] nIdSelect

The new selector output. The caller should set this parameter to the local ID of a part
that has a direct link to one of the selector outputs.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetSelection call changes the state of the output-selector
control, all clients that have registered IControlChangeNotify interfaces with that control
receive notifications. In its implementation of the OnNotify method, a client can inspect
the event-context GUID to discover whether it or another client is the source of the
control-change event. If the caller supplies a NULL pointer for this parameter, the
client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nIdSelect is not the local ID of a part at a

Syntax

HRESULT SetSelection( 
  [in] UINT    nIdSelect, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

selector output.

E_OUTOFMEMORY Out of memory.

A local ID is a number that uniquely identifies a part among all parts in a device
topology. To obtain the local ID of a part, call the IPart::GetLocalId method on the part
object.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioOutputSelector Interface

IPart::GetLocalId

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiooutputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid


IAudioPeakMeter interface
(devicetopology.h)
Article07/27/2022

The IAudioPeakMeter interface provides access to a hardware peak-meter control. The
client obtains a reference to the IAudioPeakMeter interface of a subunit by calling the
IPart::Activate method with parameter refiid set to REFIID IID_IAudioPeakMeter. The call
to IPart::Activate succeeds only if the subunit supports the IAudioPeakMeter interface.
Only a subunit object that represents a hardware peak meter will support this interface.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioPeakMeter interface provides convenient
access to the KSPROPERTY_AUDIO_PEAKMETER property of a subunit that has a subtype
GUID value of KSNODETYPE_PEAKMETER. To obtain the subtype GUID of a subunit, call
the IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioPeakMeter interface inherits from the IUnknown interface. IAudioPeakMeter
also has these types of members:

The IAudioPeakMeter interface has these methods.

 

IAudioPeakMeter::GetChannelCount  

The GetChannelCount method gets the number of channels in the audio stream.
(IAudioPeakMeter.GetChannelCount)

IAudioPeakMeter::GetLevel  

The GetLevel method gets the peak level that the peak meter recorded for the specified channel
since the peak level for that channel was previously read.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IAudioPeakMeter::GetChannelCount
method (devicetopology.h)
Article07/27/2022

The GetChannelCount method gets the number of channels in the audio stream.

C++

[out] pcChannels

Pointer to a UINT variable into which the method writes the channel count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pcChannels is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Syntax

HRESULT GetChannelCount( 
  [out] UINT *pcChannels 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioPeakMeter Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter


IAudioPeakMeter::GetLevel method
(devicetopology.h)
Article10/13/2021

The GetLevel method gets the peak level that the peak meter recorded for the specified
channel since the peak level for that channel was previously read.

C++

[in] nChannel

The channel number. If the audio stream has N channels, the channels are numbered
from 0 to N– 1. To get the number of channels in the stream, call the
IAudioPeakMeter::GetChannelCount method.

[out] pfLevel

Pointer to a float variable into which the method writes the peak meter level in decibels.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is out of range.

E_POINTER Pointer pfLevel is NULL.

Syntax

HRESULT GetLevel( 
  [in]  UINT  nChannel, 
  [out] float *pfLevel 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiopeakmeter-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioPeakMeter Interface

IAudioPeakMeter::GetChannelCount

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiopeakmeter-getchannelcount


IAudioTreble interface
(devicetopology.h)
Article02/16/2023

The IAudioTreble interface provides access to a hardware treble-level control. The client
obtains a reference to the IAudioTreble interface of a subunit by calling the
IPart::Activate method with parameter refiid set to REFIID IID_IAudioTreble. The call to
IPart::Activate succeeds only if the subunit supports the IAudioTreble interface. Only a
subunit object that represents a hardware function for controlling the level of the treble
frequencies in each channel will support this interface.

The IAudioTreble interface provides per-channel controls for setting and getting the
gain or attenuation level of the treble frequencies in the audio stream. If a treble-level
hardware control can only attenuate the channels in the audio stream, then the
maximum treble level for any channel is 0 dB. If a treble-level control can provide gain
(amplification), then the maximum treble level is greater than 0 dB.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioTreble interface provides convenient
access to the KSPROPERTY_AUDIO_TREBLE property of a subunit that has a subtype
GUID value of KSNODETYPE_TONE. To obtain the subtype GUID of a subunit, call the
IPart::GetSubType method. For more information about KS properties and KS node
types, see the Windows DDK documentation.

The IAudioTreble interface inherits from the IPerChannelDbLevel interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Inheritance

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

DeviceTopology API

IPart::Activate

IPerChannelDbLevel Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel


IAudioVolumeLevel interface
(devicetopology.h)
Article02/16/2023

The IAudioVolumeLevel interface provides access to a hardware volume control. The
client obtains a reference to the IAudioVolumeLevel interface of a subunit by calling the
IPart::Activate method with parameter refiid set to REFIID IID_IAudioVolumeLevel. The
call to IPart::Activate succeeds only if the subunit supports the IAudioVolumeLevel
interface. Only a subunit object that represents a hardware volume-level control will
support this interface.

The IAudioVolumeLevel interface provides per-channel controls for setting and getting
the gain or attenuation levels in the audio stream. If a volume-level hardware control
can only attenuate the channels in the audio stream, then the maximum volume level for
any channel is 0 dB. If a volume-level control can provide gain (amplification), then the
maximum volume level is greater than 0 dB.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IAudioVolumeLevel interface provides
convenient access to the KSPROPERTY_AUDIO_VOLUMELEVEL property of a subunit that
has a subtype GUID value of KSNODETYPE_VOLUME. To obtain the subtype GUID of a
subunit, call the IPart::GetSubType method. For more information about KS properties
and KS node types, see the Windows DDK documentation.

The IAudioVolumeLevel interface inherits from the IPerChannelDbLevel interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Inheritance

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

DeviceTopology API

IPart::Activate

IPerChannelDbLevel Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel


IConnector interface (devicetopology.h)
Article07/22/2021

The IConnector interface represents a point of connection between components. The
client obtains a reference to an IConnector interface by calling the
IDeviceTopology::GetConnector or IConnector::GetConnectedTo method, or by calling
the IPart::QueryInterface method with parameter iid set to REFIID IID_IConnector.

An IConnector interface instance can represent:

An audio jack on a piece of hardware
An internal connection to an integrated endpoint device (for example, a built-in
microphone in a laptop computer)
A software connection implemented through DMA transfers

The methods in the IConnector interface can describe various kinds of connectors. A
connector has a type (a ConnectorType enumeration constant) and a subtype (a GUID
obtained from the IPart::GetSubType method).

A part in a device topology can be either a connector or a subunit. The IPart interface
provides methods that are common to connectors and subunits.

For code examples that use the IConnector interface, see the implementations of the
GetHardwareDeviceTopology and SelectCaptureDevice functions in Device Topologies.

The IConnector interface inherits from the IUnknown interface. IConnector also has
these types of members:

The IConnector interface has these methods.

 

IConnector::ConnectTo  

The ConnectTo method connects this connector to a connector in another device-topology object.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getconnectedto
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IConnector::Disconnect  

The Disconnect method disconnects this connector from another connector.

IConnector::GetConnectedTo  

The GetConnectedTo method gets the connector to which this connector is connected.

IConnector::GetConnectorIdConnectedTo  

The GetConnectorIdConnectedTo method gets the global ID of the connector, if any, that this
connector is connected to.

IConnector::GetDataFlow  

The GetDataFlow method gets the direction of data flow through this connector.

IConnector::GetDeviceIdConnectedTo  

The GetDeviceIdConnectedTo method gets the device identifier of the audio device, if any, that
this connector is connected to.

IConnector::GetType  

The GetType method gets the type of this connector.

IConnector::IsConnected  

The IsConnected method indicates whether this connector is connected to another connector.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


Feedback

Was this page helpful?

Get help at Microsoft Q&A

DeviceTopology API

IConnector::GetConnectedTo

IDeviceTopology::GetConnector

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getconnectedto
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getconnector


IConnector::ConnectTo method
(devicetopology.h)
Article10/13/2021

The ConnectTo method connects this connector to a connector in another device-
topology object.

C++

[in] pConnectTo

The other connector. This parameter points to the IConnector interface of the connector
object that represents the connector in the other device topology. The caller is
responsible for releasing its counted reference to the IConnector interface when it is no
longer needed. The ConnectTo method obtains its own reference to this interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pConnectTo is NULL.

E_INVALIDARG The current connector and
remote connector pointed to
by pConnectTo, have the same
direction of data flow. A
connector with data-flow
direction "In" must be
connected to another
connector with data-flow

Syntax

HRESULT ConnectTo( 
  [in] IConnector *pConnectTo 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


Feedback

Was this page helpful?

Get help at Microsoft Q&A

direction "Out" to create a
valid connection in the
topology. To determine the
data flow of a connector, call
IConnector::GetDataFlow.

E_NOINTERFACE The object pointed to by
pConnectTo is not a valid
connector object.

HRESULT_FROM_WIN32(ERROR_DEVICE_ALREADY_ATTACHED) One of the two connectors is
already attached to another
connector. For information
about this macro, see the
Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getdataflow
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IConnector::Disconnect method
(devicetopology.h)
Article06/29/2021

The Disconnect method disconnects this connector from another connector.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_NOTFOUND This connector is already disconnected.

HRESULT_FROM_WIN32(ERROR_FILE_READ_ONLY) A permanent connection cannot be
disconnected. For information about this
macro, see the Windows SDK
documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Syntax

HRESULT Disconnect(); 

Return value

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IConnector Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IConnector::GetConnectedTo method
(devicetopology.h)
Article10/13/2021

The GetConnectedTo method gets the connector to which this connector is connected.

C++

[out] ppConTo

Pointer to a pointer variable into which the method writes the address of the IConnector
interface of the other connector object. Through this method, the caller obtains a
counted reference to the interface. The caller is responsible for releasing the interface,
when it is no longer needed, by calling the interface's Release method. If the
GetConnectedTo call fails, *ppConTo is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppConTo is NULL.

E_NOTFOUND This connector is not connected, or the
other side of the connection is not
another device topology (for example, a
Software_IO connection).

HRESULT_FROM_WIN32(ERROR_PATH_NOT_FOUND) The device topology on the other side of
the connection is not active (that is, the

Syntax

HRESULT GetConnectedTo( 
  [out] IConnector **ppConTo 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


Feedback

Was this page helpful?

Get help at Microsoft Q&A

device state is not
DEVICE_STATE_ACTIVE).

For code examples that call this method, see the implementations of the
GetHardwareDeviceTopology and SelectCaptureDevice functions in Device Topologies.

For information about Software_IO connections, see ConnectorType Enumeration. For
information about the HRESULT_FROM_WIN32 macro, see the Windows SDK
documentation. For information about the DEVICE_STATE_NOTPRESENT device state, see
DEVICE_STATE_XXX Constants.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-state-xxx-constants
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IConnector::GetConnectorIdConnectedT
o method (devicetopology.h)
Article10/13/2021

The GetConnectorIdConnectedTo method gets the global ID of the connector, if any,
that this connector is connected to.

C++

[out] ppwstrConnectorId

Pointer to a string pointer into which the method writes the address of a null-
terminated, wide-character string that contains the other connector's global ID. The
method allocates the storage for the string. The caller is responsible for freeing the
storage, when it is no longer needed, by calling the CoTaskMemFree function. If the
GetConnectorIdConnectedTo call fails, *ppwstrConnectorId is NULL. For information
about CoTaskMemFree, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_NOTFOUND This connector is not connected, or the other side of the
connection is not another device topology (for example, a
Software_IO connection).

E_POINTER Parameter ppwstrConnectorId is NULL.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT GetConnectorIdConnectedTo( 
  [out] LPWSTR *ppwstrConnectorId
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

A global ID is a string that uniquely identifies a part among all parts in all device
topologies in the system. Clients should treat this string as opaque. That is, clients
should not attempt to parse the contents of the string to obtain information about the
part. The reason is that the string format is undefined and might change from one
implementation of the DeviceTopology API to the next.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IConnector::GetDataFlow method
(devicetopology.h)
Article10/13/2021

The GetDataFlow method gets the direction of data flow through this connector.

C++

[out] pFlow

Pointer to a variable into which the method writes the data-flow direction. The direction
is one of the following DataFlow enumeration values:

In

Out

If data flows into the device through the connector, the data-flow direction is In.
Otherwise, the data-flow direction is Out.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pFlow is NULL.

Syntax

HRESULT GetDataFlow( 
  [out] DataFlow *pFlow 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

For a code example that calls this method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IConnector::GetDeviceIdConnectedTo
method (devicetopology.h)
Article10/13/2021

The GetDeviceIdConnectedTo method gets the device identifier of the audio device, if
any, that this connector is connected to.

C++

[out] ppwstrDeviceId

Pointer to a string pointer into which the method writes the address of a null-
terminated, wide-character string that contains the device identifier of the connected
device. The method allocates the storage for the string. The caller is responsible for
freeing the storage, when it is no longer needed, by calling the CoTaskMemFree
function. If the GetDeviceIdConnectedTo call fails, *ppwstrDeviceId is NULL. For
information about CoTaskMemFree, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppwstrDeviceId is NULL.

E_NOTFOUND This connector is not connected, or the other side of the
connection is not another device topology (for example, a
Software_IO connection).

E_MEMORY Out of memory.

Syntax

HRESULT GetDeviceIdConnectedTo( 
  [out] LPWSTR *ppwstrDeviceId 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

The device identifier obtained from this method can be used as an input parameter to
the IMMDeviceEnumerator::GetDevice method.

This method is functionally equivalent to, but more efficient than, the following series of
method calls:

Call the IConnector::GetConnectedTo method to obtain the IConnector interface of
the "to" connector.
Call the IConnector::QueryInterface method (with parameter iid set to REFIID
IID_IPart) to obtain the IPart interface of the "to" connector.
Call the IPart::GetTopologyObject method to obtain the IDeviceTopology interface
of the "to" device (the device that contains the "to" connector).
Call the IDeviceTopology::GetDeviceId method to obtain the device ID of the "to"
device.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

IMMDeviceEnumerator::GetDevice

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getconnectedto
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-gettopologyobject
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getdeviceid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice


IConnector::GetType method
(devicetopology.h)
Article10/13/2021

The GetType method gets the type of this connector.

C++

[out] pType

Pointer to a variable into which the method writes the connector type. The connector
type is one of the following ConnectorType enumeration constants:

Unknown_Connector

Physical_Internal

Physical_External

Software_IO

Software_Fixed

Network

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pType is NULL.

Syntax

HRESULT GetType( 
  [out] ConnectorType *pType 
); 

Parameters

Return value



Feedback

Was this page helpful?

A connector corresponds to a "pin" in kernel streaming (KS) terminology. The mapping
of KS pins to connectors is as follows:

If the KS pin communication type is KSPIN_COMMUNICATION_SINK,
KSPIN_COMMUNICATION_SOURCE, or KSPIN_COMMUNICATION_BOTH, then the
connector type is Software_IO.
Else, if the pin is part of a physical connection between two KS filters (devices) in
the same audio adapter or in different audio adapters, then the connector type is
Software_Fixed.
Else, if the KS pin category is KSNODETYPE_SPEAKER,
KSNODETYPE_MICROPHONE, KSNODETYPE_LINE_CONNECTOR, or
KSNODETYPE_SPDIF_INTERFACE, the connector type is Physical_External.
Else, for a pin that does not meet any of the preceding criteria, the connector type
is Physical_Internal.

For more information about KS pins, see the Windows DDK documentation.

For a code example that calls the GetType method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IConnector::IsConnected method
(devicetopology.h)
Article10/13/2021

The IsConnected method indicates whether this connector is connected to another
connector.

C++

[out] pbConnected

Pointer to a BOOL variable into which the method writes the connection state. If the
state is TRUE, this connector is connected to another connector. If FALSE, this connector
is unconnected.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pbConnected is NULL.

For a code example that calls the IsConnected method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

Syntax

HRESULT IsConnected( 
  [out] BOOL *pbConnected 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


IControlChangeNotify interface
(devicetopology.h)
Article07/22/2021

The IControlChangeNotify interface provides notifications when the status of a part
(connector or subunit) changes. Unlike the other interfaces in this section, which are
implemented by the DeviceTopology API, the IControlChangeNotify interface must be
implemented by a client. To receive notifications, the client passes a pointer to its
IControlChangeNotify interface instance as a parameter to the
IPart::RegisterControlChangeCallback method.

After registering its IControlChangeNotify interface, the client receives event
notifications in the form of callbacks through the OnNotify method in the interface.

In implementing the IControlChangeNotify interface, the client should observe these
rules to avoid deadlocks and undefined behavior:

The methods in the interface must be nonblocking. The client should never wait on
a synchronization object during an event callback.
The client should never call the IPart::UnregisterControlChangeCallback method
during an event callback.
The client should never release the final reference on an MMDevice API object
during an event callback.

The IControlChangeNotify interface inherits from the IUnknown interface.
IControlChangeNotify also has these types of members:

The IControlChangeNotify interface has these methods.

 

IControlChangeNotify::OnNotify  

The OnNotify method notifies the client when the status of a connector or subunit changes.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-registercontrolchangecallback
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-unregistercontrolchangecallback
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::RegisterControlChangeCallback

IPart::UnregisterControlChangeCallback

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-registercontrolchangecallback
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-unregistercontrolchangecallback


IControlChangeNotify::OnNotify
method (devicetopology.h)
Article10/13/2021

The OnNotify method notifies the client when the status of a connector or subunit
changes.

C++

[in] dwSenderProcessId

The process ID of the client that changed the state of the control. If a notification is
generated by a hardware event, this process ID will differ from the client's process ID.
For more information, see Remarks.

[in] pguidEventContext

A pointer to the context GUID for the control-change event. The client that initiates the
control change supplies this GUID. For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

A client can use this method to keep track of control changes made by other processes
and by the hardware. However, a client that changes a control setting can typically
disregard the notification that the control change generates. In its implementation of
the OnNotify method, a client can inspect the dwSenderProcessId and pguidEventContext

Syntax

HRESULT OnNotify( 
  [in] DWORD   dwSenderProcessId,
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

parameters to discover whether it or another client is the source of the control-change
event.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IControlChangeNotify Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


IControlInterface interface
(devicetopology.h)
Article07/22/2021

The IControlInterface interface represents a control interface on a part (connector or
subunit) in a device topology. The client obtains a reference to a part's IControlInterface
interface by calling the IPart::GetControlInterface method.

The IControlInterface interface inherits from the IUnknown interface. IControlInterface
also has these types of members:

The IControlInterface interface has these methods.

 

IControlInterface::GetIID  

The GetIID method gets the interface ID of the function-specific control interface of the part.

IControlInterface::GetName  

The GetName method gets the friendly name for the audio function that the control interface
encapsulates.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getcontrolinterface
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

DeviceTopology API

IPart::GetControlInterface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getcontrolinterface


IControlInterface::GetIID method
(devicetopology.h)
Article10/13/2021

The GetIID method gets the interface ID of the function-specific control interface of the
part.

C++

[out] pIID

Pointer to a GUID variable into which the method writes the interface ID of the function-
specific control interface of the part. For more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pIID is NULL.

An object that represents a part (connector or subunit) has two control interfaces. The
first is a generic control interface, IControlInterface, which has methods that are
common to all types of controls. The second is a function-specific control interface that
has methods that apply to a particular type of control. The GetIID method gets the

Syntax

HRESULT GetIID( 
  [out] GUID *pIID 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolinterface


interface ID of the second control interface. The client can supply this interface ID to the
IPart::Activate method to create an instance of the part's function-specific interface.

The method gets one of the function-specific interface IDs shown in the following table.

Interface ID Interface name

IID_IAudioAutoGainControl IAudioAutoGainControl

IID_IAudioBass IAudioBass

IID_IAudioChannelConfig IAudioChannelConfig

IID_IAudioInputSelector IAudioInputSelector

IID_IAudioLoudness IAudioLoudness

IID_IAudioMidrange IAudioMidrange

IID_IAudioMute IAudioMute

IID_IAudioOutputSelector IAudioOutputSelector

IID_IAudioPeakMeter IAudioPeakMeter

IID_IAudioTreble IAudioTreble

IID_IAudioVolumeLevel IAudioVolumeLevel

IID_IDeviceSpecificProperty IDeviceSpecificProperty

IID_IKsFormatSupport IKsFormatSupport

IID_IKsJackDescription IKsJackDescription

 

To obtain the interface ID of an interface, use the __uuidof operator. For example, the
interface ID of the IAudioAutoGainControl interface is defined as follows:

syntax

For more information about the __uuidof operator, see the Windows SDK
documentation.

const IID IID_IAudioAutoGainControl  __uuidof(IAudioAutoGainControl) 

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiobass
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioinputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioloudness
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomidrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomute
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiooutputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiotreble
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksformatsupport
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IControlInterface Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolinterface


IControlInterface::GetName method
(devicetopology.h)
Article10/13/2021

The GetName method gets the friendly name for the audio function that the control
interface encapsulates.

C++

[out] ppwstrName

Pointer to a string pointer into which the method writes the address of a null-
terminated, wide-character string that contains the friendly name. The method allocates
the storage for the string. The caller is responsible for freeing the storage, when it is no
longer needed, by calling the CoTaskMemFree function. If the GetName call fails,
*ppwstrName is NULL. For information about CoTaskMemFree, see the Windows SDK
documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppwstrName is NULL.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT GetName( 
  [out] LPWSTR *ppwstrName 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

As an example of a friendly name, a subunit with an IAudioPeakMeter interface might
have the friendly name "peak meter".

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioPeakMeter Interface

IControlInterface Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolinterface


IDeviceSpecificProperty interface
(devicetopology.h)
Article07/22/2021

The IDeviceSpecificProperty interface provides access to the control value of a device-
specific hardware control. A client obtains a reference to an IDeviceSpecificProperty
interface of a part by calling the IPart::Activate method with parameter refiid set to
REFIID IID_IDeviceSpecificProperty. The call to IPart::Activate succeeds only if the part
supports the IDeviceSpecificProperty interface. A part supports this interface only if the
underlying hardware control has a device-specific control value and the control cannot
be adequately represented by any other interface in the DeviceTopology API.

Typically, a device-specific property is useful only to a client that can infer the meaning
of the property value from information such as the part type, part subtype, and part
name. The client can obtain this information by calling the IPart::GetPartType,
IPart::GetSubType, and IPart::GetName methods.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware control parameters in
subunits (referred to as KS nodes). The IDeviceSpecificProperty interface provides
convenient access to the KSPROPERTY_AUDIO_DEV_SPECIFIC property of a subunit that
has a subtype GUID value of KSNODETYPE_DEV_SPECIFIC. To obtain the subtype GUID
of a subunit, call the IPart::GetSubType method. For more information about KS
properties and KS node types, see the Windows DDK documentation.

The IDeviceSpecificProperty interface inherits from the IUnknown interface.
IDeviceSpecificProperty also has these types of members:

The IDeviceSpecificProperty interface has these methods.

 

IDeviceSpecificProperty::Get4BRange  

The Get4BRange method gets the 4-byte range of the device-specific property value.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getparttype
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getname
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

 

IDeviceSpecificProperty::GetType  

The GetType method gets the data type of the device-specific property value.

IDeviceSpecificProperty::GetValue  

The GetValue method gets the current value of the device-specific property.

IDeviceSpecificProperty::SetValue  

The SetValue method sets the value of the device-specific property.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

IPart::GetName

IPart::GetPartType

IPart::GetSubType

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getname
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getparttype
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getsubtype


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IDeviceSpecificProperty::Get4BRange
method (devicetopology.h)
Article10/13/2021

The Get4BRange method gets the 4-byte range of the device-specific property value.

C++

[out] plMin

Pointer to a LONG variable into which the method writes the minimum property value.

[out] plMax

Pointer to a LONG variable into which the method writes the maximum property value.

[out] plStepping

Pointer to a LONG variable into which the method writes the stepping value between
consecutive property values in the range *plMin to *plMax. If the difference between the
maximum and minimum property values is d, and the range is divided into n steps
(uniformly sized intervals), then the property can take n + 1 discrete values and the size
of the step between consecutive values is d / n.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

Syntax

HRESULT Get4BRange( 
  [out] LONG *plMin, 
  [out] LONG *plMax, 
  [out] LONG *plStepping 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_POINTER Pointer plMin, plMax, or plStepping is
NULL.

HRESULT_FROM_WIN32(ERROR_NOT_SUPPORTED) The property value is not a 32-bit signed
or unsigned integer. For information about
this macro, see the Windows SDK
documentation.

This method reports the range and step size for a property value that is a 32-bit signed
or unsigned integer. These two data types are represented by VARENUM enumeration
constants VT_I4 and VT_UI4, respectively. If the property value is not a 32-bit integer,
then the method returns an error status code. For more information about VARENUM,
see the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceSpecificProperty Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty


IDeviceSpecificProperty::GetType
method (devicetopology.h)
Article10/13/2021

The GetType method gets the data type of the device-specific property value.

C++

[out] pVType

Pointer to a VARTYPE variable into which the method writes a VARTYPE enumeration
value that indicates the data type of the device-specific property value. For more
information about VARTYPE and VARTYPE, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pVType is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT GetType( 
  [out] VARTYPE *pVType 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header devicetopology.h

IDeviceSpecificProperty Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty


IDeviceSpecificProperty::GetValue
method (devicetopology.h)
Article10/13/2021

The GetValue method gets the current value of the device-specific property.

C++

[out] pvValue

Pointer to a caller-allocated buffer into which the method writes the property value.

pcbValue

[inout] Pointer to a DWORD variable that specifies the size in bytes of the property
value. On entry, *pcbValue contains the size of the caller-allocated buffer (or 0 if pvValue
is NULL). Before returning, the method writes the actual size of the property value
written to the buffer (or the required size if the buffer is too small or if pvValue is NULL).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pcbValue is NULL.

HRESULT_FROM_WIN32(ERROR_INSUFFICIENT_BUFFER) The buffer pointed to by parameter
pvValue is too small to contain the
property value, or pvValue is NULL
and the size of the property value is

Syntax

HRESULT GetValue( 
  [out] void  *pvValue, 
        DWORD *pcbValue 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

fixed rather than variable. For
information about this macro, see the
Windows SDK documentation.

If the size of the property value is variable rather than fixed, the caller can obtain the
required buffer size by calling GetValue with parameter pvValue = NULL and *pcbValue
= 0. The method writes the required buffer size to *pcbValue. With this information, the
caller can allocate a buffer of the required size and call GetValue a second time to
obtain the property value.

If the caller-allocated buffer is too small to hold the property value, GetValue writes the
required buffer size to *pcbValue and returns an error status code. In this case, it writes
nothing to the buffer pointed by pvValue.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceSpecificProperty Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty


IDeviceSpecificProperty::SetValue
method (devicetopology.h)
Article10/13/2021

The SetValue method sets the value of the device-specific property.

C++

[in] pvValue

Pointer to the new value for the device-specific property.

[in] cbValue

The size in bytes of the device-specific property value.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetValue call changes the state of the control, all clients
that have registered IControlChangeNotify interfaces with that control receive
notifications. In its implementation of the OnNotify method, a client can inspect the
event-context GUID to discover whether it or another client is the source of the control-
change event. If the caller supplies a NULL pointer for this parameter, the client's
notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetValue( 
  [in] void    *pvValue, 
  [in] DWORD   cbValue, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

E_POINTER Pointer pvValue is NULL.

E_INVALIDARG Parameter cbValue does not match the required size of
the property value.

E_OUTOFMEMORY Out of memory.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceSpecificProperty Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty


IDeviceTopology interface
(devicetopology.h)
Article07/22/2021

The IDeviceTopology interface provides access to the topology of an audio device. The
topology of an audio adapter device consists of the data paths that lead to and from
audio endpoint devices and the control points that lie along the paths. An audio
endpoint device also has a topology, but it is trivial, as explained in Device Topologies. A
client obtains a reference to the IDeviceTopology interface for an audio endpoint device
by following these steps:

1. By using one of the techniques described in IMMDevice Interface, obtain a
reference to the IMMDevice interface for an audio endpoint device.

2. Call the IMMDevice::Activate method with parameter refiid set to REFIID
IID_IDeviceTopology.

After obtaining the IDeviceTopology interface for an audio endpoint device, an
application can explore the topologies of the audio adapter devices to which the
endpoint device is connected.

For code examples that use the IDeviceTopology interface, see the implementations of
the GetHardwareDeviceTopology and SelectCaptureDevice functions in Device
Topologies.

The IDeviceTopology interface inherits from the IUnknown interface. IDeviceTopology
also has these types of members:

The IDeviceTopology interface has these methods.

 

IDeviceTopology::GetConnector  

The GetConnector method gets the connector that is specified by a connector number.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IDeviceTopology::GetConnectorCount  

The GetConnectorCount method gets the number of connectors in the device-topology object.

IDeviceTopology::GetDeviceId  

The GetDeviceId method gets the device identifier of the device that is represented by the device-
topology object.

IDeviceTopology::GetPartById  

The GetPartById method gets a part that is identified by its local ID.

IDeviceTopology::GetSignalPath  

The GetSignalPath method gets a list of parts in the signal path that links two parts, if the path
exists.

IDeviceTopology::GetSubunit  

The GetSubunit method gets the subunit that is specified by a subunit number.

IDeviceTopology::GetSubunitCount  

The GetSubunitCount method gets the number of subunits in the device topology.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IMMDevice::Activate

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IDeviceTopology::GetConnector method
(devicetopology.h)
Article10/13/2021

The GetConnector method gets the connector that is specified by a connector number.

C++

[in] nIndex

The connector number. If a device topology contains n connectors, the connectors are
numbered 0 to n – 1. To get the number of connectors in the device topology, call the
IDeviceTopology::GetConnectorCount method.

[out] ppConnector

Pointer to a pointer variable into which the method writes the address of the IConnector
interface of the connector object. Through this method, the caller obtains a counted
reference to the interface. The caller is responsible for releasing the interface, when it is
no longer needed, by calling the interface's Release method. If the GetConnector call
fails, *ppConnector is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nIndex is out of range.

Syntax

HRESULT GetConnector( 
  [in]  UINT       nIndex, 
  [out] IConnector **ppConnector 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getconnectorcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector


Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_POINTER Pointer ppConnector is NULL.

For code examples that call the GetConnector method, see the implementations of the
GetHardwareDeviceTopology and SelectCaptureDevice functions in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IConnector Interface

IDeviceTopology Interface

IDeviceTopology::GetConnectorCount

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getconnectorcount


IDeviceTopology::GetConnectorCount
method (devicetopology.h)
Article10/13/2021

The GetConnectorCount method gets the number of connectors in the device-topology
object.

C++

[out] pCount

Pointer to a UINT pointer variable into which the method writes the connector count
(the number of connectors in the device topology).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pCount is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT GetConnectorCount( 
  [out] UINT *pCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header devicetopology.h

IDeviceTopology Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology


IDeviceTopology::GetDeviceId method
(devicetopology.h)
Article10/13/2021

The GetDeviceId method gets the device identifier of the device that is represented by
the device-topology object.

C++

[out] ppwstrDeviceId

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string that contains the device identifier. The method
allocates the storage for the string. The caller is responsible for freeing the storage,
when it is no longer needed, by calling the CoTaskMemFree function. If the GetDeviceId
call fails, *ppwstrDeviceId is NULL. For information about CoTaskMemFree, see the
Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

D_POINTER Pointer ppwstrDeviceId is NULL.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT GetDeviceId( 
  [out] LPWSTR *ppwstrDeviceId 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

The device identifier obtained from this method can be used as an input parameter to
the IMMDeviceEnumerator::GetDevice method.

For a code example that uses the GetDeviceId method, see Using the IKsControl
Interface to Access Audio Properties.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceTopology Interface

IMMDeviceEnumerator::GetDevice

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice


IDeviceTopology::GetPartById method
(devicetopology.h)
Article10/13/2021

The GetPartById method gets a part that is identified by its local ID.

C++

[in] nId

The part to get. This parameter is the local ID of the part. For more information, see
Remarks.

[out] ppPart

Pointer to a pointer variable into which the method writes the address of the IPart
interface of the part object that is identified by nId. Through this method, the caller
obtains a counted reference to the interface. The caller is responsible for releasing the
interface, when it is no longer needed, by calling the interface's Release method. If the
GetPartById call fails, *ppPart is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nId is not a valid local ID.

E_POINTER Pointer ppPart is NULL.

Syntax

HRESULT GetPartById( 
  [in]  UINT  nId, 
  [out] IPart **ppPart 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


Feedback

Was this page helpful?

Get help at Microsoft Q&A

A local ID is a number that uniquely identifies a part among all the parts in a device
topology. The IAudioInputSelector::GetSelection and IAudioOutputSelector::GetSelection
methods retrieve the local ID of a connected part. The IAudioInputSelector::SetSelection
and IAudioOutputSelector::SetSelection methods select the input or output that is
connected to a part that is identified by its local ID. When you have a pointer to a part
object, you can call the IPart::GetLocalId method to get the local ID of the part.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioInputSelector::GetSelection

IAudioInputSelector::SetSelection

IAudioOutputSelector::GetSelection

IAudioOutputSelector::SetSelection

IDeviceTopology Interface

IPart Interface

IPart::GetLocalId

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getlocalid


IDeviceTopology::GetSignalPath method
(devicetopology.h)
Article10/13/2021

The GetSignalPath method gets a list of parts in the signal path that links two parts, if
the path exists.

C++

[in] pIPartFrom

Pointer to the "from" part. This parameter is a pointer to the IPart interface of the part at
the beginning of the signal path.

[in] pIPartTo

Pointer to the "to" part. This parameter is a pointer to the IPart interface of the part at
the end of the signal path.

[in] bRejectMixedPaths

Specifies whether to reject paths that contain mixed data. If bRejectMixedPaths is TRUE
(nonzero), the method ignores any data path that contains a mixer (that is, a processing
node that sums together two or more input signals). If FALSE, the method will try to find
a path that connects the "from" and "to" parts regardless of whether the path contains a
mixer.

[out] ppParts

Syntax

HRESULT GetSignalPath( 
  [in]  IPart      *pIPartFrom, 
  [in]  IPart      *pIPartTo, 
  [in]  BOOL       bRejectMixedPaths, 
  [out] IPartsList **ppParts 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


Pointer to a pointer variable into which the method writes the address of an IPartsList
interface instance. This interface encapsulates the list of parts in the signal path that
connects the "from" part to the "to" part. Through this method, the caller obtains a
counted reference to the interface. The caller is responsible for releasing the interface,
when it is no longer needed, by calling the interface's Release method. If the
GetSignalPath call fails, *ppParts is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pIPartFrom, pIPartTo, or ppParts is NULL.

E_NOTFOUND No path linking the two parts was found.

E_NOINTERFACE Parameter pIPartFrom or pIPartTo does not point to a
valid IPart interface.

E_OUTOFMEMORY Out of memory.

This method creates an IPartsList interface instance that contains a list of the parts that
lie along the specified signal path. The parts in the parts list are ordered according to
their relative positions in the signal path. The "to" part is the first item in the list and the
"from" part is the last item in the list.

If the list contains n parts, the "to" and "from" parts are identified by list indexes 0 and
n– 1, respectively. To get the number of parts in a parts list, call the IPartsList::GetCount
method. To retrieve a part by its index, call the IPartsList::GetPart method.

The parts in the signal path must all be part of the same device topology. The path
cannot span boundaries between device topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getpart


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceTopology Interface

IPart Interface

IPartsList Interface

IPartsList::GetCount

IPartsList::GetPart

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getpart


IDeviceTopology::GetSubunit method
(devicetopology.h)
Article10/13/2021

The GetSubunit method gets the subunit that is specified by a subunit number.

C++

[in] nIndex

The subunit number. If a device topology contains n subunits, the subunits are
numbered from 0 to n– 1. To get the number of subunits in the device topology, call the
IDeviceTopology::GetSubunitCount method.

[out] ppSubunit

Pointer to a pointer variable into which the method writes the address of the ISubunit
interface of the subunit object. Through this method, the caller obtains a counted
reference to the interface. The caller is responsible for releasing the interface, when it is
no longer needed, by calling the interface's Release method. If the GetSubunit call fails,
*ppSubunit is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nIndex is out of range.

Syntax

HRESULT GetSubunit( 
  [in]  UINT     nIndex, 
  [out] ISubunit **ppSubunit 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsubunitcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit


Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_POINTER Pointer ppSubunit is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceTopology Interface

IDeviceTopology::GetSubunitCount

ISubunit Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsubunitcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit


IDeviceTopology::GetSubunitCount
method (devicetopology.h)
Article10/13/2021

The GetSubunitCount method gets the number of subunits in the device topology.

C++

[out] pCount

Pointer to a UINT variable into which the method writes the subunit count (the number
of subunits in the device topology).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pCount is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Syntax

HRESULT GetSubunitCount( 
  [out] UINT *pCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header devicetopology.h

IDeviceTopology Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology


IKsFormatSupport interface
(devicetopology.h)
Article07/22/2021

The IKsFormatSupport interface provides information about the audio data formats that
are supported by a software-configured I/O connection (typically a DMA channel)
between an audio adapter device and system memory. The client obtains a reference to
the IKsFormatSupport interface of a part by calling the IPart::Activate method with
parameter refiid set to REFIID IID_IKsFormatSupport. The call to IPart::Activate succeeds
only if the part supports the IKsFormatSupport interface. Only a part object that
represents a connector with a Software_IO connection type will support this interface.
For more information about Software_IO, see ConnectorType Enumeration.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware description parameters
in connectors (referred to as KS pins). The IKsFormatSupport interface provides
convenient access to the KSPROPERTY_PIN_DATAINTERSECTION and
KSPROPERTY_PIN_PROPOSEDDATAFORMAT properties of a connector to a system bus
(typically, PCI or PCI Express) or an external bus (for example, USB). Not all drivers
support the KSPROPERTY_PIN_PROPOSEDDATAFORMAT property. If a driver does not
support this property, IKsFormatSupport uses the information in the KS data ranges for
the connector to determine whether the connector supports the proposed format. For
more information about KS properties, KS pins, and KS data ranges, see the Windows
DDK documentation.

The IKsFormatSupport interface inherits from the IUnknown interface.
IKsFormatSupport also has these types of members:

The IKsFormatSupport interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

IKsFormatSupport::GetDevicePreferredFormat  

The GetDevicePreferredFormat method gets the preferred audio stream format for the
connection.

IKsFormatSupport::IsFormatSupported  

The IsFormatSupported method indicates whether the audio endpoint device supports the
specified audio stream format.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IKsFormatSupport::GetDevicePreferredF
ormat method (devicetopology.h)
Article10/13/2021

The GetDevicePreferredFormat method gets the preferred audio stream format for the
connection.

C++

[out] ppKsFormat

Pointer to a pointer variable into which the method writes the address of a buffer that
contains the format specifier for the preferred format. The specifier begins with a
KSDATAFORMAT structure that might be followed by additional format information. The
method allocates the storage for the format specifier. The caller is responsible for
freeing the storage, when it is no longer needed, by calling the CoTaskMemFree
function. If the method fails, *ppKsFormat is NULL. For more information about
KSDATAFORMAT, format specifiers, and CoTaskMemFree, see the Windows DDK
documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppKsFormat is NULL.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT GetDevicePreferredFormat(
  [out] PKSDATAFORMAT *ppKsFormat
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsFormatSupport Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksformatsupport


IKsFormatSupport::IsFormatSupported
method (devicetopology.h)
Article10/13/2021

The IsFormatSupported method indicates whether the audio endpoint device supports
the specified audio stream format.

C++

[in] pKsFormat

Pointer to an audio-stream format specifier. This parameter points to a caller-allocated
buffer that contains a format specifier. The specifier begins with a KSDATAFORMAT
structure that might be followed by additional format information. For more information
about KSDATAFORMAT and format specifiers, see the Windows DDK documentation.

[in] cbFormat

The size in bytes of the buffer that contains the format specifier.

[out] pbSupported

Pointer to a BOOL variable into which the method writes a value to indicate whether the
format is supported. The method writes TRUE if the device supports the format and
FALSE if the device does not support the format.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT IsFormatSupported( 
  [in]  PKSDATAFORMAT pKsFormat, 
  [in]  DWORD         cbFormat, 
  [out] BOOL          *pbSupported 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ks/ns-ks-ksdataformat


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

E_POINTER Pointer pKsFormat or pbSupported is NULL.

E_INVALIDARG The format specifier is not valid.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsFormatSupport Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksformatsupport


IKsJackDescription interface
(devicetopology.h)
Article07/22/2021

The IKsJackDescription interface provides information about the jacks or internal
connectors that provide a physical connection between a device on an audio adapter
and an external or internal endpoint device (for example, a microphone or CD player).
The client obtains a reference to the IKsJackDescription interface of a part by calling the
IPart::Activate method with parameter refiid set to REFIID IID_IKsJackDescription. The call
to IPart::Activate succeeds only if the part supports the IKsJackDescription interface.
Only a part object that represents a connector with a Physical_External or
Physical_Internal connection type will support this interface.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware description parameters
in connectors (referred to as KS pins). The IKsJackDescription interface provides
convenient access to the KSPROPERTY_JACK_DESCRIPTION property of a connector to
an endpoint device. For more information about KS properties and KS pins, see the
Windows DDK documentation.

The IKsJackDescription interface inherits from the IUnknown interface.
IKsJackDescription also has these types of members:

The IKsJackDescription interface has these methods.

 

IKsJackDescription::GetJackCount  

The GetJackCount method gets the number of jacks required to connect to an audio endpoint
device.

IKsJackDescription::GetJackDescription  

The GetJackDescription method gets a description of an audio jack.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


If an audio endpoint device supports the IKsJackDescription interface, the Windows
multimedia control panel, Mmsys.cpl, displays the jack information. To view the jack
information, follow these steps:

1. To run Mmsys.cpl, open a Command Prompt window and enter the following
command:

control mmsys.cpl

Alternatively, you can run Mmsys.cpl by right-clicking the speaker icon in the
notification area, which is located on the right side of the taskbar, and selecting
either Playback Devices or Recording Devices.

2. After the Mmsys.cpl window opens, select a device from either the list of playback
devices or the list of recording devices, and click Properties.

3. When the properties window opens, click General. If the selected property page
displays the jack information for the device, the device supports the
IKsJackDescription interface. If the property page displays the text "No jack
information is available", the device does not support the interface.

The following code example shows how to obtain the IKsJackDescription interface for
an audio endpoint device:

C++

Remarks

//----------------------------------------------------------- 
// Get the IKsJackDescription interface that describes the 
// audio jack or jacks that the endpoint device plugs into. 
//----------------------------------------------------------- 
#define EXIT_ON_ERROR(hres)  \ 
              if (FAILED(hres)) { goto Exit; } 
#define SAFE_RELEASE(punk)  \ 
              if ((punk) != NULL)  \ 
                { (punk)->Release(); (punk) = NULL; } 

HRESULT GetJackInfo(IMMDevice *pDevice, 
                    IKsJackDescription **ppJackDesc) 
{ 
    HRESULT hr = S_OK; 
    IDeviceTopology *pDeviceTopology = NULL; 
    IConnector *pConnFrom = NULL; 
    IConnector *pConnTo = NULL; 
    IPart *pPart = NULL; 
    IKsJackDescription *pJackDesc = NULL; 

    if (NULL != ppJackDesc) 
    { 



In the preceding code example, the GetJackInfo function takes two parameters. Input
parameter pDevice points to the IMMDevice interface of an endpoint device. Output
parameter ppJackDesc points to a pointer value into which the function writes the
address of the corresponding IKsJackDescription interface, if the interface exists. If the
interface does not exist, the function writes NULL to *ppJackDesc and returns error code
E_NOINTERFACE.

        *ppJackDesc = NULL; 
    } 
    if (NULL == pDevice || NULL == ppJackDesc) 
    { 
        return E_POINTER; 
    } 

    // Get the endpoint device's IDeviceTopology interface. 
    hr = pDevice->Activate(__uuidof(IDeviceTopology), CLSCTX_ALL, 
                           NULL, (void**)&pDeviceTopology); 
    EXIT_ON_ERROR(hr) 

    // The device topology for an endpoint device always 
    // contains just one connector (connector number 0). 
    hr = pDeviceTopology->GetConnector(0, &pConnFrom); 
    EXIT_ON_ERROR(hr) 

    // Step across the connection to the jack on the adapter. 
    hr = pConnFrom->GetConnectedTo(&pConnTo); 
    if (HRESULT_FROM_WIN32(ERROR_PATH_NOT_FOUND) == hr) 
    { 
        // The adapter device is not currently active. 
        hr = E_NOINTERFACE; 
    } 
    EXIT_ON_ERROR(hr) 

    // Get the connector's IPart interface. 
    hr = pConnTo->QueryInterface(__uuidof(IPart), (void**)&pPart); 
    EXIT_ON_ERROR(hr) 

    // Activate the connector's IKsJackDescription interface. 
    hr = pPart->Activate(CLSCTX_INPROC_SERVER, 
                         __uuidof(IKsJackDescription), (void**)&pJackDesc); 
    EXIT_ON_ERROR(hr) 

    *ppJackDesc = pJackDesc; 

Exit: 
    SAFE_RELEASE(pDeviceTopology)
    SAFE_RELEASE(pConnFrom) 
    SAFE_RELEASE(pConnTo) 
    SAFE_RELEASE(pPart) 
    return hr; 
} 

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

In the preceding code example, the call to IMMDevice::Activate retrieves the
IDeviceTopology interface of the endpoint device. The device topology of an endpoint
device contains a single connector (connector number 0) that connects to the adapter
device. At the other side of this connection, the connector on the adapter device
represents the audio jack or jacks that the endpoint device plugs into. The call to the
IDeviceTopology::GetConnector method retrieves the IConnector interface of the
connector on the endpoint device, and the IConnector::GetConnectedTo method call
retrieves the corresponding connector on the adapter device. Finally, the
IConnector::QueryInterface method call retrieves the IPart interface of the adapter
device's connector, and the IPart::Activate method call retrieves the connector's
IKsJackDescription interface, if it exists.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iconnector-getconnectedto
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IKsJackDescription::GetJackCount
method (devicetopology.h)
Article10/13/2021

The GetJackCount method gets the number of jacks required to connect to an audio
endpoint device.

C++

[out] pcJacks

Pointer to a UINT variable into which the method writes the number of jacks associated
with the connector.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pcJacks is NULL.

An audio endpoint device that plays or records a stream that contains multiple channels
might require a connection with more than one jack (physical connector).

For example, a set of surround speakers that plays a 6-channel audio stream might
require three stereo jacks. In this example, the first jack transmits the channels for the
front-left and front-right speakers, the second jack transmits the channels for the front-

Syntax

HRESULT GetJackCount( 
  [out] UINT *pcJacks 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

center and low-frequency-effects (subwoofer) speakers, and the third jack transmits the
channels for the side-left and side-right speakers.

After calling this method to retrieve the jack count, call the
IKsJackDescription::GetJackDescription method once for each jack to obtain a
description of the jack.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsJackDescription Interface

IKsJackDescription::GetJackDescription

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription


IKsJackDescription::GetJackDescription
method (devicetopology.h)
Article10/13/2021

The GetJackDescription method gets a description of an audio jack.

C++

[in] nJack

The jack index. If the connection consists of n jacks, the jacks are numbered from 0 to n–
1. To get the number of jacks, call the IKsJackDescription::GetJackCount method.

[out] pDescription

Pointer to a caller-allocated buffer into which the method writes a structure of type
KSJACK_DESCRIPTION that contains information about the jack. The buffer size must be
at least sizeof(KSJACK_DESCRIPTION).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nJack is not a valid jack index.

E_POINTER Pointer pDescription is NULL.

Syntax

HRESULT GetJackDescription( 
  [in]  UINT               nJack,
  [out] KSJACK_DESCRIPTION *pDescription 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

When a user needs to plug an audio endpoint device into a jack or unplug it from a jack,
an audio application can use the descriptive information that it retrieves from this
method to help the user to find the jack. This information includes:

The physical location of the jack on the computer chassis or external box.
The color of the jack.
The type of physical connector used for the jack.
The mapping of channels to the jack.

For more information, see KSJACK_DESCRIPTION.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsJackDescription Interface

IKsJackDescription::GetJackCount

KSJACK_DESCRIPTION

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackcount


IKsJackDescription2 interface
(devicetopology.h)
Article07/22/2021

The IKsJackDescription2 interface provides information about the jacks or internal
connectors that provide a physical connection between a device on an audio adapter
and an external or internal endpoint device (for example, a microphone or CD player).

In addition to getting jack information such as type of connection, the
IKsJackDescription is primarily used to report whether the jack was connected to the
device. In Windows 7, if the connected device driver supports IKsJackDescription2, the
audio stack or an application can use this interface to get information additional jack
information. This includes the jack's detection capability and if the format of the device
has changed dynamically.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware description parameters
in connectors (referred to as KS pins). The IKsJackDescription2 interface provides
convenient access to the KSPROPERTY_JACK_DESCRIPTION2 property of a connector to
an endpoint device. For more information about KS properties and KS pins, see the
Windows DDK documentation.

An application obtains a reference to the IKsJackDescription2 interface of a part by
calling the IPart::Activate method with parameter refiid set to
REFIIDIID_IKsJackDescription2. The call to IPart::Activate succeeds only if the part
supports the IKsJackDescription2 interface. Only a part object that represents a bridge
pin connector on a KS filter device topology object supports this interface.

For a code example, see IKsJackDescription.

The IKsJackDescription2 interface inherits from the IUnknown interface.
IKsJackDescription2 also has these types of members:

The IKsJackDescription2 interface has these methods.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

  

IKsJackDescription2::GetJackCount  

The GetJackCount method gets the number of jacks on the connector, which are required to
connect to an endpoint device.

IKsJackDescription2::GetJackDescription2  

The GetJackDescription2 method gets the description of a specified audio jack.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IPart::Activate

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate


IKsJackDescription2::GetJackCount
method (devicetopology.h)
Article10/13/2021

The GetJackCount method gets the number of jacks on the connector, which are
required to connect to an endpoint device.

C++

[out] pcJacks

Receives the number of audio jacks associated with the connector.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pcJacks is NULL.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Syntax

HRESULT GetJackCount( 
  [out] UINT *pcJacks 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header devicetopology.h

IKsJackDescription2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription2


IKsJackDescription2::GetJackDescription
2 method (devicetopology.h)
Article10/13/2021

The GetJackDescription2 method gets the description of a specified audio jack.

C++

[in] nJack

The index of the jack to get a description for. If the connection consists of n jacks, the
jacks are numbered from 0 to n– 1. To get the number of jacks, call the
IKsJackDescription::GetJackCount method.

[out] pDescription2

Pointer to a caller-allocated buffer into which the method writes a structure of type
KSJACK_DESCRIPTION2 that contains information about the jack. The buffer size must
be at least sizeof(KSJACK_DESCRIPTION2) .

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nJack is not a valid jack index.

E_POINTER Pointer pDescription is NULL.

Syntax

HRESULT GetJackDescription2( 
  [in]  UINT                nJack, 
  [out] KSJACK_DESCRIPTION2 *pDescription2 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription2-getjackcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsJackDescription2

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription2


IKsJackSinkInformation interface
(devicetopology.h)
Article07/22/2021

The IKsJackSinkInformation interface provides access to jack sink information if the jack
is supported by the hardware.

The client obtains a reference to the IKsJackSinkInformation interface by activating it on
the IPart interface of a bridge pin connector on a KS filter device topology object. To
activate the object, call the IPart::Activate method with parameter refiid set to REFIID
IID_IKsJackSinkInformation.

Most Windows audio adapter drivers support the Windows Driver Model (WDM) and
use kernel-streaming (KS) properties to represent the hardware description parameters
in connectors (referred to as KS pins). The IKsJackSinkInformation interface provides
convenient access to the KSPROPERTY_JACK_SINK_INFO property of a connector to an
endpoint device. For more information about KS properties and KS pins, see the
Windows DDK documentation.

The IKsJackSinkInformation interface inherits from the IUnknown interface.
IKsJackSinkInformation also has these types of members:

The IKsJackSinkInformation interface has these methods.

 

IKsJackSinkInformation::GetJackSinkInformation  

The GetJackSinkInformation method retrieves the sink information for the specified jack.

   

Minimum supported client Windows 7 [desktop apps only]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-activate
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IKsJackDescription

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription


IKsJackSinkInformation::GetJackSinkInfo
rmation method (devicetopology.h)
Article10/13/2021

The GetJackSinkInformation method retrieves the sink information for the specified
jack.

C++

[out] pJackSinkInformation

Pointer to a caller-allocated buffer that receives the sink information of the jack in a
KSJACK_SINK_INFORMATION structure. The buffer size must be at least
sizeof(KSJACK_SINK_INFORMATION) .

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nJack is not a valid jack index.

E_POINTER Pointer pDescription is NULL.

   

Minimum supported client Windows 7 [desktop apps only]

Syntax

HRESULT GetJackSinkInformation( 
  [out] KSJACK_SINK_INFORMATION *pJackSinkInformation 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IKsJackSinkInformation

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjacksinkinformation


IPart interface (devicetopology.h)
Article07/22/2021

The IPart interface represents a part (connector or subunit) of a device topology. A
client obtains a reference to an IPart interface by calling the
IDeviceTopology::GetPartById or IPartsList::GetPart method, or by calling the
QueryInterface method of the IConnector or ISubunit interface on a part object and
setting the method's iid parameter to REFIID IID_IPart.

An object with an IPart interface can encapsulate one of the following device topology
parts:

Connector. This is a part that connects to another device to form a data path for
transmitting an audio stream between devices.
Subunit. This is a part that processes an audio stream (for example, volume
control).

The IPart interface of a connector or subunit object represents the generic functions
that are common to all parts, and the object's IConnector or ISubunit interface
represents the functions that are specific to a connector or subunit. In addition, a part
might support one or more control interfaces for controlling or monitoring the function
of the part. For example, the client controls a volume-control subunit through its
IAudioVolumeLevel interface.

The IPart interface provides methods for getting the name, local ID, global ID, and part
type of a connector or subunit. In addition, IPart can activate a control interface on a
connector or subunit.

For code examples that use the IPart interface, see the implementations of the
GetHardwareDeviceTopology and SelectCaptureDevice functions in Device Topologies.

The IPart interface inherits from the IUnknown interface. IPart also has these types of
members:

The IPart interface has these methods.

 

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getpart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IPart::Activate  

The Activate method activates a function-specific interface on a connector or subunit.

IPart::EnumPartsIncoming  

The EnumPartsIncoming method gets a list of all the incoming parts�that is, the parts that reside
on data paths that are upstream from this part.

IPart::EnumPartsOutgoing  

The EnumPartsOutgoing method retrieves a list of all the outgoing parts�that is, the parts that
reside on data paths that are downstream from this part.

IPart::GetControlInterface  

The GetControlInterface method gets a reference to the specified control interface, if this part
supports it.

IPart::GetControlInterfaceCount  

The GetControlInterfaceCount method gets the number of control interfaces that this part
supports.

IPart::GetGlobalId  

The GetGlobalId method gets the global ID of this part.

IPart::GetLocalId  

The GetLocalId method gets the local ID of this part.

IPart::GetName  

The GetName method gets the friendly name of this part.

IPart::GetPartType  

The GetPartType method gets the part type of this part.

IPart::GetSubType  

The GetSubType method gets the part subtype of this part.

IPart::GetTopologyObject  

The GetTopologyObject method gets a reference to the IDeviceTopology interface of the device-
topology object that contains this part.



Feedback

Was this page helpful?

 

IPart::RegisterControlChangeCallback  

The RegisterControlChangeCallback method registers the IControlChangeNotify interface, which
the client implements to receive notifications of status changes in this part.

IPart::UnregisterControlChangeCallback  

The UnregisterControlChangeCallback method removes the registration of an
IControlChangeNotify interface that the client previously registered by a call to the
IPart::RegisterControlChangeCallback method.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IAudioVolumeLevel Interface

IConnector Interface

IDeviceTopology::GetPartById

IPartsList::GetPart

ISubunit Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getpart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IPart::Activate method
(devicetopology.h)
Article11/23/2021

The Activate method activates a function-specific interface on a connector or subunit.

C++

[in] dwClsContext

The execution context in which the code that manages the newly created object will run.
The caller can restrict the context by setting this parameter to the bitwise OR of one or
more CLSCTX enumeration values. The client can avoid imposing any context
restrictions by specifying CLSCTX_ALL. For more information about CLSCTX, see the
Windows SDK documentation.

[in] refiid

The interface ID for the requested control function. The client should set this parameter
to one of the following REFIID values:

IID_IAudioAutoGainControl

IID_IAudioBass

IID_IAudioChannelConfig

IID_IAudioInputSelector

IID_IAudioLoudness

IID_IAudioMidrange

Syntax

HRESULT Activate( 
  [in]  DWORD  dwClsContext, 
  [in]  REFIID refiid, 
  [out] void   **ppvObject 
); 

Parameters



IID_IAudioMute

IID_IAudioOutputSelector

IID_IAudioPeakMeter

IID_IAudioTreble

IID_IAudioVolumeLevel

IID_IDeviceSpecificProperty

IID_IKsFormatSupport

IID_IKsJackDescription

IID_IKsJackDescription2

For more information, see Remarks.

[out] ppvObject

Pointer to a pointer variable into which the method writes the address of the interface
that is specified by parameter refiid. Through this method, the caller obtains a counted
reference to the interface. The caller is responsible for releasing the interface, when it is
no longer needed, by calling the interface's Release method. If the Activate call fails,
*ppObject is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The CLSCTX_INPROC_SERVER bit in dwClsContext is zero.

E_POINTER Pointer ppvObject is NULL.

E_NOINTERFACE The part object does not support the requested interface.

The Activate method supports the following function-specific control interfaces:

IAudioAutoGainControl

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol


IAudioBass
IAudioChannelConfig
IAudioInputSelector
IAudioLoudness
IAudioMidrange
IAudioMute
IAudioOutputSelector
IAudioPeakMeter
IAudioTreble
IAudioVolumeLevel
IDeviceSpecificProperty
IKsFormatSupport
IKsJackDescription
IKsJackDescription2

To obtain the interface ID of the function-specific control interface of a part, call the
part's IControlInterface::GetIID method. To obtain the interface ID of a function-specific
control interface type, use the __uuidof operator. For example, the interface ID of
IAudioAutoGainControl is defined as follows:

syntax

For more information about the __uuidof operator, see the Windows SDK
documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

const IID IID_IAudioAutoGainControl  __uuidof(IAudioAutoGainControl) 

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiobass
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioinputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioloudness
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomidrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomute
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiooutputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiotreble
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksformatsupport
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription2
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolinterface-getiid


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IControlInterface::GetIID

IPart Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolinterface-getiid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::EnumPartsIncoming method
(devicetopology.h)
Article10/13/2021

The EnumPartsIncoming method gets a list of all the incoming parts—that is, the parts
that reside on data paths that are upstream from this part.

C++

[out] ppParts

Pointer to a pointer variable into which the method writes the address of an IPartsList
interface that encapsulates the list of parts that are immediately upstream from this part.
Through this method, the caller obtains a counted reference to the interface. The caller
is responsible for releasing the interface, when it is no longer needed, by calling the
interface's Release method. If the EnumPartsIncoming call fails, *ppParts is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppParts is NULL.

E_NOTFOUND This part has no links to upstream parts.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT EnumPartsIncoming( 
  [out] IPartsList **ppParts 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist


Feedback

Was this page helpful?

Get help at Microsoft Q&A

A client application can traverse a device topology against the direction of audio data
flow by iteratively calling this method at each step in the traversal to get the list of parts
that lie immediately upstream from the current part.

If this part has no links to upstream parts, the method returns error code E_NOTFOUND
and does not create a parts list (*ppParts is NULL). For example, the method returns this
error code if the IPart interface represents a connector through which data enters a
device topology.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

IPartsList Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist


IPart::EnumPartsOutgoing method
(devicetopology.h)
Article10/13/2021

The EnumPartsOutgoing method retrieves a list of all the outgoing parts—that is, the
parts that reside on data paths that are downstream from this part.

C++

[out] ppParts

Pointer to a pointer variable into which the method writes the address of an IPartsList
interface that encapsulates the list of parts that are immediately downstream from this
part. Through this method, the caller obtains a counted reference to the interface. The
caller is responsible for releasing the interface, when it is no longer needed, by calling
the interface's Release method. If the EnumPartsOutgoing call fails, *ppParts is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppParts is NULL.

E_NOTFOUND This part has no links to downstream parts.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT EnumPartsOutgoing( 
  [out] IPartsList **ppParts 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist


Feedback

Was this page helpful?

Get help at Microsoft Q&A

A client application can traverse a device topology in the direction of audio data flow by
iteratively calling this method at each step in the traversal to get the list of parts that lie
immediately downstream from the current part.

If this part has no links to downstream parts, the method returns error code
E_NOTFOUND and does not create a parts list (*ppParts is NULL). For example, the
method returns this error code if the IPart interface represents a connector through
which data exits a device topology.

For a code example that uses the EnumPartsOutgoing method, see the implementation
of the SelectCaptureDevice function in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

IPartsList Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist


IPart::GetControlInterface method
(devicetopology.h)
Article10/13/2021

The GetControlInterface method gets a reference to the specified control interface, if
this part supports it.

C++

[in] nIndex

The control interface number. If a part supports n control interfaces, the control
interfaces are numbered from 0 to n– 1.

[out] ppInterfaceDesc

Pointer to a pointer variable into which the method writes the address of the
IControlInterface interface of the specified audio function. Through this method, the
caller obtains a counted reference to the interface. The caller is responsible for releasing
the interface, when it is no longer needed, by calling the interface's Release method. If
the GetControlInterface call fails, *ppFunction is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppFunction is NULL.

Syntax

HRESULT GetControlInterface( 
  [in]  UINT              nIndex,
  [out] IControlInterface **ppInterfaceDesc 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolinterface


Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_INVALIDARG Parameter nIndex is out of range.

E_NOTFOUND The part does not have a control interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IControlInterface Interface

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolinterface
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetControlInterfaceCount method
(devicetopology.h)
Article10/13/2021

The GetControlInterfaceCount method gets the number of control interfaces that this
part supports.

C++

[out] pCount

Pointer to a UINT variable into which the method writes the number of control
interfaces on this part.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pCount is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT GetControlInterfaceCount(
  [out] UINT *pCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header devicetopology.h

IPart Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetGlobalId method
(devicetopology.h)
Article10/13/2021

The GetGlobalId method gets the global ID of this part.

C++

[out] ppwstrGlobalId

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string that contains the global ID. The method allocates the
storage for the string. The caller is responsible for freeing the storage, when it is no
longer needed, by calling the CoTaskMemFree function. If the GetGlobalId call fails,
*ppwstrGlobalId is NULL. For information about CoTaskMemFree, see the Windows SDK
documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppwstrGlobalId is NULL.

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT GetGlobalId( 
  [out] LPWSTR *ppwstrGlobalId 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

A global ID is a string that uniquely identifies a part among all parts in all device
topologies in the system. Clients should treat this string as opaque. That is, clients
should not attempt to parse the contents of the string to obtain information about the
part. The reason is that the string format is undefined and might change from one
implementation of the DeviceTopology API to the next.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetLocalId method
(devicetopology.h)
Article10/13/2021

The GetLocalId method gets the local ID of this part.

C++

[out] pnId

Pointer to a UINT variable into which the method writes the local ID of this part.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pnId is NULL.

When you have a pointer to a part object, you can call this method to get the local ID of
the part. A local ID is a number that uniquely identifies a part among all parts in a device
topology.

The IAudioInputSelector::GetSelection and IAudioOutputSelector::GetSelection methods
retrieve the local ID of a connected part. The IAudioInputSelector::SetSelection and
IAudioOutputSelector::SetSelection methods select the input or output that is connected

Syntax

HRESULT GetLocalId( 
  [out] UINT *pnId 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-setselection


Feedback

Was this page helpful?

Get help at Microsoft Q&A

to a part that is identified by its local ID. The IDeviceTopology::GetPartById method gets
a part that is identified by its local ID.

For code examples that use the GetLocalId method, see the following topics:

Device Topologies
Using the IKsControl Interface to Access Audio Properties

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IAudioInputSelector::GetSelection

IAudioInputSelector::SetSelection

IAudioOutputSelector::GetSelection

IAudioOutputSelector::SetSelection

IDeviceTopology::GetPartById

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudioinputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-getselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iaudiooutputselector-setselection
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getpartbyid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetName method
(devicetopology.h)
Article10/13/2021

The GetName method gets the friendly name of this part.

C++

[out] ppwstrName

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string that contains the friendly name of this part. The
method allocates the storage for the string. The caller is responsible for freeing the
storage, when it is no longer needed, by calling the CoTaskMemFree function. If the
GetName call fails, *ppwstrName is NULL. For information about CoTaskMemFree, see
the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppwstrName is NULL.

   

Syntax

HRESULT GetName( 
  [out] LPWSTR *ppwstrName 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetPartType method
(devicetopology.h)
Article10/13/2021

The GetPartType method gets the part type of this part.

C++

[out] pPartType

Pointer to a PartType variable into which the method writes the part type. The part type
is one of the following PartType enumeration values, which indicate whether the part is
a connector or subunit:

Connector

Subunit

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pPartType is NULL.

For a code example that uses this method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

Syntax

HRESULT GetPartType( 
  [out] PartType *pPartType 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetSubType method
(devicetopology.h)
Article10/13/2021

The GetSubType method gets the part subtype of this part.

C++

[out] pSubType

Pointer to a GUID variable into which the method writes the subtype GUID for this part.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pSubType is NULL.

This method typically retrieves one of the KSNODETYPE_Xxx GUID values from header
file Ksmedia.h, although some custom drivers might provide other GUID values. For
more information about KSNODETYPE_Xxx GUIDs, see the Windows DDK
documentation.

As explained in IPart Interface, a part can be either a connector or a subunit.

Syntax

HRESULT GetSubType( 
  [out] GUID *pSubType 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


For a part that is a connector, this method retrieves the pin-category GUID that the
driver has assigned to the connector. The following are examples of pin-category GUIDs:

KSNODETYPE_ANALOG_CONNECTOR, if the connector is part of the data path to
or from an analog device such as a microphone or speakers.
KSNODETYPE_SPDIF_INTERFACE, if the connector is part of the data path to or
from an S/PDIF port.

For more information, see the discussion of the pin-category property,
KSPROPERTY_PIN_CATEGORY, in the Windows DDK documentation.

For a part that is a subunit, this method retrieves a subtype GUID that indicates the
stream-processing function that the subunit performs. For example, for a volume-
control subunit, the method retrieves GUID value KSNODETYPE_VOLUME.

The following table lists some of the subtype GUIDs that can be retrieved by the
GetSubType method for a subunit.

Subtype GUID Control interface Required or optional

KSNODETYPE_3D_EFFECTS IAudioChannelConfig Optional

KSNODETYPE_AGC IAudioAutoGainControl Required

KSNODETYPE_DAC IAudioChannelConfig Optional

KSNODETYPE_DEMUX IAudioOutputSelector Required

KSNODETYPE_DEV_SPECIFIC IDeviceSpecificProperty Required

KSNODETYPE_LOUDNESS IAudioLoudness Required

KSNODETYPE_MUTE IAudioMute Required

KSNODETYPE_MUX IAudioInputSelector Required

KSNODETYPE_PEAKMETER IAudioPeakMeter Required

KSNODETYPE_PROLOGIC_DECODER IAudioChannelConfig Optional

KSNODETYPE_TONE IAudioBass

IAudioMidrange

IAudioTreble

OptionalOptional
Optional

KSNODETYPE_VOLUME IAudioChannelConfig

IAudioVolumeLevel

OptionalRequired

 

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiooutputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicespecificproperty
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioloudness
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomute
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioinputselector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiopeakmeter
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiobass
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomidrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiotreble
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiochannelconfig
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel


Feedback

Was this page helpful?

Get help at Microsoft Q&A

In the preceding table, the middle column lists the control interfaces that are supported
by subunits of the subtype specified in the left column. The right column indicates
whether the subunit's support for a control interface is required or optional. If support is
required, an application can rely on a subunit of the specified subtype to support the
control interface. If support is optional, a subunit of the specified subtype can, but does
not necessarily, support the control interface.

The control interfaces in the preceding table provide convenient access to the
properties of subunits. However, some subunits have properties for which no
corresponding control interfaces exist. Applications can access these properties through
the IKsControl interface. For more information, see Using the IKsControl Interface to
Access Audio Properties.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksproxy/nn-ksproxy-ikscontrol
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::GetTopologyObject method
(devicetopology.h)
Article10/13/2021

The GetTopologyObject method gets a reference to the IDeviceTopology interface of
the device-topology object that contains this part.

C++

[out] ppTopology

Pointer to a pointer variable into which the method writes the address of the
IDeviceTopology interface of the device-topology object. The caller obtains a counted
reference to the interface from this method. Through this method, the caller obtains a
counted reference to the interface. The caller is responsible for releasing the interface,
when it is no longer needed, by calling the interface's Release method. If the
GetTopologyObject call fails, *ppTopology is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer ppTopology is NULL.

For code examples that use this method, see the following topics:

Syntax

HRESULT GetTopologyObject( 
  [out] IDeviceTopology **ppTopology 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Device Topologies
Using the IKsControl Interface to Access Audio Properties

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IDeviceTopology Interface

IPart Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


IPart::RegisterControlChangeCallback
method (devicetopology.h)
Article10/13/2021

The RegisterControlChangeCallback method registers the IControlChangeNotify
interface, which the client implements to receive notifications of status changes in this
part.

C++

[in] riid

The function-specific control interface that is to be monitored for control changes. For
more information, see Remarks.

[in] pNotify

Pointer to the client's IControlChangeNotify interface. If the method succeeds, it calls
the AddRef method on the client's IControlChangeNotify interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter riid is not a valid control-interface identifier.

E_POINTER Pointer pNotify is NULL.

Syntax

HRESULT RegisterControlChangeCallback( 
  [in] REFGUID              riid,
  [in] IControlChangeNotify *pNotify 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref


Set parameter riid to one of the following GUID values:

IID_IAudioAutoGainControl
IID_IAudioBass
IID_IAudioChannelConfig
IID_IAudioInputSelector
IID_IAudioLoudness
IID_IAudioMidrange
IID_IAudioMute
IID_IAudioOutputSelector
IID_IAudioPeakMeter
IID_IAudioTreble
IID_IAudioVolumeLevel
IID_IDeviceSpecificProperty
IID_IKsFormatSupport
IID_IKsJackDescription

To obtain the interface ID of the function-specific control interface for a part, call the
part's IControlInterface::GetIID method. To obtain the interface ID of a function-specific
control interface type, use the __uuidof operator. For example, the interface ID of
IAudioAutoGainControl is defined as follows:

syntax

For more information about the __uuidof operator, see the Windows SDK
documentation.

Before the client releases its final reference to the IControlChangeNotify interface, it
should call the IPart::UnregisterControlChangeCallback method to unregister the
interface. Otherwise, the application leaks the resources held by the
IControlChangeNotify and IPart objects. Note that RegisterControlChangeCallback
calls the client's IControlChangeNotify::AddRef method, and
UnregisterControlChangeCallback calls the IControlChangeNotify::Release method. If
the client errs by releasing its reference to the IControlChangeNotify interface before
calling UnregisterControlChangeCallback, the IPart object never releases its reference
to the IControlChangeNotify interface. For example, a poorly designed

Remarks

const IID IID_IAudioAutoGainControl  __uuidof(IAudioAutoGainControl) 

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolinterface-getiid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudioautogaincontrol
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-unregistercontrolchangecallback
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IControlChangeNotify implementation might call UnregisterControlChangeCallback
from the destructor for the IControlChangeNotify object. In this case, the client will not
call UnregisterControlChangeCallback until the IPart object releases its reference to the
IControlChangeNotify interface, and the IPart object will not release its reference to the
IControlChangeNotify interface until the client calls UnregisterControlChangeCallback.
For more information about the AddRef and Release methods, see the discussion of the
IUnknown interface in the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IControlChangeNotify Interface

IControlInterface::GetIID

IPart Interface

IPart::UnregisterControlChangeCallback

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolinterface-getiid
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-unregistercontrolchangecallback


IPart::UnregisterControlChangeCallback
method (devicetopology.h)
Article10/13/2021

The UnregisterControlChangeCallback method removes the registration of an
IControlChangeNotify interface that the client previously registered by a call to the
IPart::RegisterControlChangeCallback method.

C++

[in] pNotify

Pointer to the IControlChangeNotify interface whose registration is to be deleted. The
client passed this same interface pointer to the part object in a previous call to the
IPart::RegisterControlChangeCallback method. If the
UnregisterControlChangeCallback method succeeds, it calls the Release method on the
client's IControlChangeNotify interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Pointer pNotify is NULL.

E_NOTFOUND Interface instance *pNotify is not currently registered.

Syntax

HRESULT UnregisterControlChangeCallback( 
  [in] IControlChangeNotify *pNotify 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-registercontrolchangecallback


Feedback

Was this page helpful?

Before the client releases its final reference to the IControlChangeNotify interface, it
should call UnregisterControlChangeCallback to unregister the interface. Otherwise, the
application leaks the resources held by the IControlChangeNotify and IPart objects.
Note that the IPart::RegisterControlChangeCallback method calls the client's
IControlChangeNotify::AddRef method, and UnregisterControlChangeCallback calls
the IControlChangeNotify::Release method. If the client errs by releasing its reference
to the IControlChangeNotify interface before calling
UnregisterControlChangeCallback, the IPart object never releases its reference to the
IControlChangeNotify interface. For example, a poorly designed IControlChangeNotify
implementation might call UnregisterControlChangeCallback from the destructor for
the IControlChangeNotify object. In this case, the client will not call
UnregisterControlChangeCallback until the IPart object releases its reference to the
IControlChangeNotify interface, and the IPart object will not release its reference to the
IControlChangeNotify interface until the client calls UnregisterControlChangeCallback.
For more information about the AddRef and Release methods, see the discussion of the
IUnknown interface in the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IControlChangeNotify Interface

IPart Interface

IPart::RegisterControlChangeCallback

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-registercontrolchangecallback


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


IPartsList interface (devicetopology.h)
Article07/22/2021

The IPartsList interface represents a list of parts, each of which is an object with an IPart
interface that represents a connector or subunit. A client obtains a reference to an
IPartsList interface by calling the IPart::EnumPartsIncoming, IPart::EnumPartsOutgoing,
or IDeviceTopology::GetSignalPath method.

For a code example that uses the IPartsList interface, see the implementation of the
SelectCaptureDevice function in Device Topologies.

The IPartsList interface inherits from the IUnknown interface. IPartsList also has these
types of members:

The IPartsList interface has these methods.

 

IPartsList::GetCount  

The GetCount method gets the number of parts in the parts list.

IPartsList::GetPart  

The GetPart method gets a part from the parts list.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-enumpartsincoming
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-enumpartsoutgoing
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsignalpath
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

DeviceTopology API

IDeviceTopology::GetSignalPath

IPart Interface

IPart::EnumPartsIncoming

IPart::EnumPartsOutgoing

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsignalpath
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-enumpartsincoming
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-enumpartsoutgoing


IPartsList::GetCount method
(devicetopology.h)
Article10/13/2021

The GetCount method gets the number of parts in the parts list.

C++

[out] pCount

Pointer to a UINT variable into which the method writes the parts count (the number of
parts in the parts list).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pCount is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Syntax

HRESULT GetCount( 
  [out] UINT *pCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header devicetopology.h

IPartsList Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist


IPartsList::GetPart method
(devicetopology.h)
Article10/13/2021

The GetPart method gets a part from the parts list.

C++

[in] nIndex

The part number of the part to retrieve. If the parts list contains n parts, the parts are
numbered 0 to n– 1. Call the IPartsList::GetCount method to get the number of parts in
the list.

[out] ppPart

Pointer to a pointer variable into which the method writes the address of the IPart
interface of the part object. Through this method, the caller obtains a counted reference
to the IPart interface. The caller is responsible for releasing the interface, when it is no
longer needed, by calling the interface's Release method. If the GetPart call fails, *ppPart
is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nIndex is out of range.

Syntax

HRESULT GetPart( 
  [in]  UINT  nIndex, 
  [out] IPart **ppPart 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


Feedback

Was this page helpful?

Get help at Microsoft Q&A

E_POINTER Pointer ppPart is NULL.

For a code example that calls the GetPart method, see the implementation of the
SelectCaptureDevice function in Device Topologies.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPart Interface

IPartsList Interface

IPartsList::GetCount

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipartslist
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipartslist-getcount


IPerChannelDbLevel interface
(devicetopology.h)
Article07/27/2022

The IPerChannelDbLevel interface represents a generic subunit control interface that
provides per-channel control over the volume level, in decibels, of an audio stream or of
a frequency band in an audio stream. A positive volume level represents gain, and a
negative value represents attenuation.

Clients do not call the methods in this interface directly. Instead, this interface serves as
the base interface for the following interfaces, which clients do call directly:

IAudioBass Interface
IAudioMidrange Interface
IAudioTreble Interface
IAudioVolumeLevel Interface

The IPerChannelDbLevel interface inherits from the IUnknown interface.
IPerChannelDbLevel also has these types of members:

The IPerChannelDbLevel interface has these methods.

 

IPerChannelDbLevel::GetChannelCount  

The GetChannelCount method gets the number of channels in the audio stream.
(IPerChannelDbLevel.GetChannelCount)

IPerChannelDbLevel::GetLevel  

The GetLevel method gets the volume level, in decibels, of the specified channel.

IPerChannelDbLevel::GetLevelRange  

The GetLevelRange method gets the range, in decibels, of the volume level of the specified
channel.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiobass
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomidrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiotreble
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

 

IPerChannelDbLevel::SetLevel  

The SetLevel method sets the volume level, in decibels, of the specified channel.

IPerChannelDbLevel::SetLevelAllChannels  

The SetLevelAllChannels method sets the volume levels, in decibels, of all the channels in the
audio stream.

IPerChannelDbLevel::SetLevelUniform  

The SetLevelUniform method sets all channels in the audio stream to the same uniform volume
level, in decibels.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IAudioBass Interface

IAudioMidrange Interface

IAudioTreble Interface

IAudioVolumeLevel Interface

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiobass
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiomidrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiotreble
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iaudiovolumelevel


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IPerChannelDbLevel::GetChannelCount
method (devicetopology.h)
Article07/27/2022

The GetChannelCount method gets the number of channels in the audio stream.

C++

[out] pcChannels

Pointer to a UINT variable into which the method writes the channel count (the number
of channels in the audio stream).

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Pointer pcChannels is NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Syntax

HRESULT GetChannelCount( 
  [out] UINT *pcChannels 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header devicetopology.h

IPerChannelDbLevel Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel


IPerChannelDbLevel::GetLevel method
(devicetopology.h)
Article10/13/2021

The GetLevel method gets the volume level, in decibels, of the specified channel.

C++

[in] nChannel

The channel number. If the audio stream has N channels, the channels are numbered
from 0 to N– 1. To get the number of channels in the stream, call the
IPerChannelDbLevel::GetChannelCount method.

[out] pfLevelDB

Pointer to a float variable into which the method writes the volume level, in decibels, of
the specified channel.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is out of range.

E_POINTER Pointer pfLevelDB is NULL.

Syntax

HRESULT GetLevel( 
  [in]  UINT  nChannel, 
  [out] float *pfLevelDB 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPerChannelDbLevel Interface

IPerChannelDbLevel::GetChannelCount

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


IPerChannelDbLevel::GetLevelRange
method (devicetopology.h)
Article10/13/2021

The GetLevelRange method gets the range, in decibels, of the volume level of the
specified channel.

C++

[in] nChannel

The number of the selected channel. If the audio stream has n channels, the channels
are numbered from 0 to n– 1. To get the number of channels in the stream, call the
IPerChannelDbLevel::GetChannelCount method.

[out] pfMinLevelDB

Pointer to a float variable into which the method writes the minimum volume level in
decibels.

[out] pfMaxLevelDB

Pointer to a float variable into which the method writes the maximum volume level in
decibels.

[out] pfStepping

Pointer to a float variable into which the method writes the stepping value between
consecutive volume levels in the range *pfMinLevelDB to *pfMaxLevelDB. If the difference
between the maximum and minimum volume levels is d decibels, and the range is

Syntax

HRESULT GetLevelRange( 
  [in]  UINT  nChannel, 
  [out] float *pfMinLevelDB, 
  [out] float *pfMaxLevelDB, 
  [out] float *pfStepping 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

divided into n steps (uniformly sized intervals), then the volume can have n + 1 discrete
levels and the size of the step between consecutive levels is d / n decibels.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is out of range.

E_POINTER Pointer pfminLevelDB, pfmaxLevelDB, or pfmaxLevelDB is
NULL.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPerChannelDbLevel Interface

IPerChannelDbLevel::GetChannelCount

Return value

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


IPerChannelDbLevel::SetLevel method
(devicetopology.h)
Article10/13/2021

The SetLevel method sets the volume level, in decibels, of the specified channel.

C++

[in] nChannel

The number of the selected channel. If the audio stream has N channels, the channels
are numbered from 0 to N– 1. To get the number of channels in the stream, call the
IPerChannelDbLevel::GetChannelCount method.

[in] fLevelDB

The new volume level in decibels. A positive value represents gain, and a negative value
represents attenuation.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetLevel call changes the state of the level control, all
clients that have registered IControlChangeNotify interfaces with that control receive
notifications. In its implementation of the OnNotify method, a client can inspect the
event-context GUID to discover whether it or another client is the source of the control-
change event. If the caller supplies a NULL pointer for this parameter, the client's
notification method receives a NULL context pointer.

Syntax

HRESULT SetLevel( 
  [in] UINT    nChannel, 
  [in] float   fLevelDB, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is out of range.

E_OUTOFMEMORY Out of memory.

If the caller specifies a value for fLevelDB that is an exact stepping value, the SetLevel
method completes successfully. A subsequent call to the IPerChannelDbLevel::GetLevel
method will return either the value that was set, or one of the following values:

If the set value was below the minimum, the GetLevel method returns the
minimum value.
If the set value was above the maximum, the GetLevel method returns the
maximum value.
If the set value was between two stepping values, the GetLevel method returns a
value that could be the next stepping value above or the stepping value below the
set value; the relative distances from the set value to the neighboring stepping
values is unimportant. The value that the GetLevel method returns is whichever
value has more of an impact on the signal path.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPerChannelDbLevel Interface

IPerChannelDbLevel::GetChannelCount

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IPerChannelDbLevel::GetLevel

IPerChannelDbLevel::GetLevelRange

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevelrange


IPerChannelDbLevel::SetLevelAllChannel
s method (devicetopology.h)
Article10/13/2021

The SetLevelAllChannels method sets the volume levels, in decibels, of all the channels
in the audio stream.

C++

[in] aLevelsDB

Pointer to an array of volume levels. This parameter points to a caller-allocated float
array into which the method writes the new volume levels, in decibels, for all the
channels. The method writes the level for a particular channel into the array element
whose index matches the channel number. If the audio stream contains n channels, the
channels are numbered 0 to n– 1. To get the number of channels in the stream, call the
IPerChannelDbLevel::GetChannelCount method.

[in] cChannels

The number of elements in the aLevelsDB array. If this parameter does not match the
number of channels in the audio stream, the method fails without modifying the
aLevelsDB array.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetLevelAllChannels call changes the state of the level
control, all clients that have registered IControlChangeNotify interfaces with that control
receive notifications. In its implementation of the OnNotify method, a client can inspect

Syntax

HRESULT SetLevelAllChannels( 
  [in] float [] aLevelsDB, 
  [in] ULONG    cChannels, 
  [in] LPCGUID  pguidEventContext
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


the event-context GUID to discover whether it or another client is the source of the
control-change event. If the caller supplies a NULL pointer for this parameter, the
client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter cChannels does not equal the number of
channels.

E_POINTER Pointer aLevelsDB is NULL.

E_OUTOFMEMORY Out of memory.

If the specified level value for any channel is beyond the range that the
IPerChannelDbLevel::GetLevelRange method reports for that channel, the
SetLevelAllChannels call clamps the value to the supported range and completes
successfully. A subsequent call to the IPerChannelDbLevel::GetLevel method retrieves
the actual value used for that channel.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPerChannelDbLevel Interface

IPerChannelDbLevel::GetChannelCount

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevelrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IPerChannelDbLevel::GetLevel

IPerChannelDbLevel::GetLevelRange

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevelrange


IPerChannelDbLevel::SetLevelUniform
method (devicetopology.h)
Article10/13/2021

The SetLevelUniform method sets all channels in the audio stream to the same uniform
volume level, in decibels.

C++

[in] fLevelDB

The new uniform level in decibels.

[in] pguidEventContext

Context value for the IControlChangeNotify::OnNotify method. This parameter points to
an event-context GUID. If the SetLevelUniform call changes the state of the level
control, all clients that have registered IControlChangeNotify interfaces with that control
receive notifications. In its implementation of the OnNotify method, a client can inspect
the event-context GUID to discover whether it or another client is the source of the
control-change event. If the caller supplies a NULL pointer for this parameter, the
client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT SetLevelUniform( 
  [in] float   fLevelDB, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-icontrolchangenotify-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-icontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the specified uniform level is beyond the range that the
IPerChannelDbLevel::GetLevelRange method reports for a particular channel, the
SetLevelUniform call clamps the value for that channel to the supported range and
completes successfully. A subsequent call to the IPerChannelDbLevel::GetLevel method
retrieves the actual value used for that channel.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

IPerChannelDbLevel Interface

IPerChannelDbLevel::GetLevel

IPerChannelDbLevel::GetLevelRange

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevelrange
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iperchanneldblevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevel
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iperchanneldblevel-getlevelrange


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISubunit interface (devicetopology.h)
Article02/16/2023

The ISubunit interface represents a hardware subunit (for example, a volume control)
that lies in the data path between a client and an audio endpoint device. The client
obtains a reference to an ISubunit interface by calling the IDeviceTopology::GetSubunit
method, or by calling the IPart::QueryInterface method with parameter iid set to REFIID
IID_ISubunit.

The ISubunit interface inherits from the IUnknown interface.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header devicetopology.h

Core Audio Interfaces

DeviceTopology API

IDeviceTopology::GetSubunit

IPart Interface

Inheritance

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsubunit
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-idevicetopology-getsubunit
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart


KSJACK_DESCRIPTION structure
(devicetopology.h)
Article10/06/2021

The KSJACK_DESCRIPTION structure describes an audio jack.

C++

ChannelMapping

Specifies the mapping of the two audio channels in a stereo jack to speaker positions.

In Windows Vista, the value of this member is one of the EChannelMapping
enumeration values shown in the following table.

Value First channel Second channel

ePcxChanMap_FL_FR Front-left speaker Front-right speaker

ePcxChanMap_FC_LFE Front-center speaker Low-frequency-effects speaker (subwoofer)

ePcxChanMap_BL_BR Back-left speaker Back-right speakers

ePcxChanMap_FLC_FRC Front-left-center speaker Front-right-center speaker

ePcxChanMap_SL_SR Side-left speaker Side-right speaker

ePcxChanMap_Unknown Unknown Unknown

 

Syntax

typedef struct __MIDL___MIDL_itf_devicetopology_0000_0000_0009 { 
  DWORD              ChannelMapping; 
  COLORREF           Color; 
  EPcxConnectionType ConnectionType; 
  EPcxGeoLocation    GeoLocation;
  EPcxGenLocation    GenLocation;
  EPxcPortConnection PortConnection; 
  BOOL               IsConnected;
} KSJACK_DESCRIPTION, *PKSJACK_DESCRIPTION; 

Members



For a physical connector with one, three, or more channels, the value of this member is
ePcxChanMap_Unknown.

In Windows 7, the EChannelMapping enumeration has been deprecated. The datatype
of this member is a DWORD. This member stores either 0 or the bitwise-OR
combination of one or more of the following values that are defined in Ksmedia.h.

syntax

Color

The jack color. The color is expressed as a 32-bit RGB value that is formed by
concatenating the 8-bit blue, green, and red color components. The blue component
occupies the 8 least-significant bits (bits 0-7), the green component occupies bits 8-15,
and the red component occupies bits 16-23. The 8 most-significant bits are zeros. If the
jack color is unknown or the physical connector has no identifiable color, the value of
this member is 0x00000000, which is black.

ConnectionType

The connection type. The value of this member is one of the EPcxConnectionType
enumeration values shown in the following table.

Value Connector type

eConnTypeUnknown Unknown

eConnTypeEighth (Windows Vista) 1/8-inch jack

#define SPEAKER_FRONT_LEFT              0x1 
#define SPEAKER_FRONT_RIGHT             0x2 
#define SPEAKER_FRONT_CENTER            0x4 
#define SPEAKER_LOW_FREQUENCY           0x8 
#define SPEAKER_BACK_LEFT               0x10 
#define SPEAKER_BACK_RIGHT              0x20 
#define SPEAKER_FRONT_LEFT_OF_CENTER    0x40 
#define SPEAKER_FRONT_RIGHT_OF_CENTER   0x80 
#define SPEAKER_BACK_CENTER             0x100 
#define SPEAKER_SIDE_LEFT               0x200 
#define SPEAKER_SIDE_RIGHT              0x400 
#define SPEAKER_TOP_CENTER              0x800 
#define SPEAKER_TOP_FRONT_LEFT          0x1000 
#define SPEAKER_TOP_FRONT_CENTER        0x2000 
#define SPEAKER_TOP_FRONT_RIGHT         0x4000 
#define SPEAKER_TOP_BACK_LEFT           0x8000 
#define SPEAKER_TOP_BACK_CENTER         0x10000 
#define SPEAKER_TOP_BACK_RIGHT          0x20000 



eConnType3Point5mm
(Windows 7)

eConnTypeQuarter 1/4-inch jack

eConnTypeAtapiInternal ATAPI internal connector

eConnTypeRCA RCA jack

eConnTypeOptical Optical connector

eConnTypeOtherDigital Generic digital connector

eConnTypeOtherAnalog Generic analog connector

eConnTypeMultichannelAnalogDIN Multichannel analog DIN connector

eConnTypeXlrProfessional XLR connector

eConnTypeRJ11Modem RJ11 modem connector

eConnTypeCombination Combination of connector types

GeoLocation

The geometric location of the jack. The value of this member is one of the
EPcxGeoLocation enumeration values shown in the following table.

Value Geometric location

eGeoLocRear Rear-mounted panel

eGeoLocFront Front-mounted panel

eGeoLocLeft Left-mounted panel

eGeoLocRight Right-mounted panel

eGeoLocTop Top-mounted panel

eGeoLocBottom Bottom-mounted panel

eGeoLocRearOPanel(Windows Vista)
eGeoLocRearPanel(Windows 7)

Rear slide-open or pull-open panel

eGeoLocRiser Riser card

eGeoLocInsideMobileLid Inside lid of mobile computer

eGeoLocDrivebay Drive bay

eGeoLocHDMI HDMI connector



eGeoLocOutsideMobileLid Outside lid of mobile computer

eGeoLocATAPI ATAPI connector

GenLocation

The general location of the jack. The value of this member is one of the
EPcxGenLocation enumeration values shown in the following table.

Value General location

eGenLocPrimaryBox On primary chassis

eGenLocInternal Inside primary chassis

eGenLocSeperate(Windows Vista)
eGenLocSeparate(Windows 7)

On separate chassis

eGenLocOther Other location

PortConnection

The type of port represented by the jack. The value of this member is one of the
EPxcPortConnection enumeration values shown in the following table.

Value Port connection type

ePortConnJack Jack

ePortConnIntegratedDevice Slot for an integrated device

ePortConnBothIntegratedAndJack Both a jack and a slot for an integrated device

ePortConnUnknown Unknown

IsConnected

If the audio adapter supports jack-presence detection on the jack, the value of
IsConnected indicates whether an endpoint device is plugged into the jack. If
IsConnected is TRUE, a device is plugged in. If it is FALSE, the jack is empty. For devices
that do not support jack-presence detection, this member is always TRUE. For more
information about jack-presence detection, see Audio Endpoint Devices.

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices


Feedback

Was this page helpful?

Get help at Microsoft Q&A

This structure is used by the IKsJackDescription::GetJackDescription method in the
DeviceTopology API. It describes an audio jack that is part of a connection between an
endpoint device and a hardware device in an audio adapter. When a user needs to plug
an endpoint device into a jack or unplug it from a jack, an audio application can use the
descriptive information in the structure to help the user to find the jack.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header devicetopology.h

Core Audio Structures

IKsJackDescription::GetJackDescription

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devicetopology-api
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription


KSJACK_DESCRIPTION2 structure
(devicetopology.h)
Article04/02/2021

The KSJACK_DESCRIPTION2 structure describes an audio jack.

To get the description of an audio jack of a connector, call
IKsJackDescription2::GetJackDescription2.

C++

DeviceStateInfo

Reserved for future use.

JackCapabilities

Stores the audio jack's capabilities: jack presence detection capability or dynamic format
changing capability. The constants that can be stored in this member of the structure
are defined in Ksmedia.h as follows:

JACKDESC2_PRESENCE_DETECT_CAPABILITY (0x00000001)
JACKDESC2_DYNAMIC_FORMAT_CHANGE_CAPABILITY (0x00000002)

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Syntax

typedef struct _tagKSJACK_DESCRIPTION2 { 
  DWORD DeviceStateInfo; 
  DWORD JackCapabilities; 
} KSJACK_DESCRIPTION2, *PKSJACK_DESCRIPTION2; 

Members

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription2-getjackdescription2


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header devicetopology.h

Core Audio Structures

IKsJackDescription2

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iksjackdescription2


KSJACK_SINK_CONNECTIONTYPE
enumeration (devicetopology.h)
Article01/31/2022

The KSJACK_SINK_CONNECTIONTYPE enumeration defines constants that specify the
type of connection. These values are used in the KSJACK_SINK_INFORMATION structure
that stores information about an audio jack sink.

C++

 

KSJACK_SINK_CONNECTIONTYPE_HDMI  
Value: 0 
High-Definition Multimedia Interface (HDMI) connection.

KSJACK_SINK_CONNECTIONTYPE_DISPLAYPORT  
Display port.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Header devicetopology.h

Syntax

typedef enum __MIDL___MIDL_itf_devicetopology_0000_0000_0010 { 
  KSJACK_SINK_CONNECTIONTYPE_HDMI = 0, 
  KSJACK_SINK_CONNECTIONTYPE_DISPLAYPORT 
} KSJACK_SINK_CONNECTIONTYPE; 

Constants

Requirements

See also



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Enumerations

IKsJackSinkInformation::GetJackSinkInformation

KSJACK_SINK_INFORMATION

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjacksinkinformation-getjacksinkinformation


KSJACK_SINK_INFORMATION structure
(devicetopology.h)
Article09/01/2022

The KSJACK_SINK_INFORMATION structure stores information about an audio jack sink.

C++

ConnType

Specifies the type of connection. The connection type values are defined in the
KSJACK_SINK_CONNECTIONTYPE enumeration.

ManufacturerId

Specifies the sink manufacturer identifier.

ProductId

Specifies the sink product identifier.

AudioLatency

Specifies the latency of the audio sink.

HDCPCapable

Syntax

typedef struct _tagKSJACK_SINK_INFORMATION { 
  KSJACK_SINK_CONNECTIONTYPE ConnType; 
  WORD                       ManufacturerId; 
  WORD                       ProductId; 
  WORD                       AudioLatency; 
  BOOL                       HDCPCapable; 
  BOOL                       AICapable; 
  UCHAR                      SinkDescriptionLength; 
  WCHAR                      SinkDescription[32]; 
  LUID                       PortId; 
} KSJACK_SINK_INFORMATION; 

Members



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Specifies whether the sink supports High-bandwidth Digital Content Protection (HDCP).

AICapable

Specifies whether the sink supports ACP Packet, ISRC1, or ISRC2.

SinkDescriptionLength

Specifies the length of the string in the SinkDescription member.

SinkDescription[32]

String containing the monitor sink name. The maximum length is defined by the
constant MAX_SINK_DESCRIPTION_NAME_LENGTH (32 wide characters).

PortId

Specifies the video port identifier in a LUID structure.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Header devicetopology.h

Core Audio Structures

IKsJackSinkInformation::GetJackSinkInformation

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/ns-devicetopology-luid
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjacksinkinformation-getjacksinkinformation


LUID structure (devicetopology.h)
Article04/02/2021

The LUID structure stores the video port identifier. This structure is stored in the PortId
member of the KSJACK_SINK_INFORMATION structure.

C++

LowPart

LowPart of the video port identifier.

HighPart

HighPart of the video port identifier.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Header devicetopology.h

Core Audio Structures

IKsJackSinkInformation::GetJackSinkInformation

Syntax

typedef struct _LUID { 
  DWORD LowPart; 
  LONG  HighPart; 
} LUID, *PLUID; 

Members

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjacksinkinformation-getjacksinkinformation


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


PartType enumeration
(devicetopology.h)
Article01/31/2022

The PartType enumeration defines constants that indicate whether a part in a device
topology is a connector or subunit.

C++

 

Connector  
Value: 0 
The part is a connector. A connector can represent an audio jack, an internal connection to an
integrated endpoint device, or a software connection implemented through DMA transfers. For
more information about connector types, see ConnectorType Enumeration.

Subunit  
The part is a subunit. A subunit is an audio-processing node in a device topology. A subunit
frequently has one or more hardware control parameters that can be set under program control.
For example, an audio application can change the volume setting of a volume-control subunit.

The IPart::GetPartType method uses the constants defined in the PartType enumeration
to indicate whether an IPart object represents a connector or a subunit. If an IPart object
represents a connector, a client can query that that object for its IConnector interface. If
an IPart object represents a subunit, a client can query that that object for its ISubunit
interface.

For more information about connectors and subunits, see Device Topologies.

Syntax

typedef enum __MIDL___MIDL_itf_devicetopology_0000_0000_0012 { 
  Connector = 0, 
  Subunit 
} PartType; 

Constants

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-ipart-getparttype
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header devicetopology.h

Core Audio Constants

Core Audio Enumerations

IConnector Interface

IPart Interface

ISubunit Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-constants
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-iconnector
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-ipart
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-isubunit


endpointvolume.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

endpointvolume.h contains the following programming interfaces:

 

IAudioEndpointVolume  

The IAudioEndpointVolume interface represents the volume controls on the audio stream to or
from an audio endpoint device.

IAudioEndpointVolumeCallback  

The IAudioEndpointVolumeCallback interface provides notifications of changes in the volume
level and muting state of an audio endpoint device.

IAudioEndpointVolumeEx  

The IAudioEndpointVolumeEx interface provides volume controls on the audio stream to or from
a device endpoint.

IAudioMeterInformation  

The IAudioMeterInformation interface represents a peak meter on an audio stream to or from an
audio endpoint device.

 

AUDIO_VOLUME_NOTIFICATION_DATA  

The AUDIO_VOLUME_NOTIFICATION_DATA structure describes a change in the volume level or
muting state of an audio endpoint device.

Interfaces

Structures



Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AUDIO_VOLUME_NOTIFICATION_DATA
structure (endpointvolume.h)
Article09/01/2022

The AUDIO_VOLUME_NOTIFICATION_DATA structure describes a change in the volume
level or muting state of an audio endpoint device.

C++

guidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This member is
the value of the event-context GUID that was provided as an input parameter to the
IAudioEndpointVolume method call that changed the endpoint volume level or muting
state. For more information, see Remarks.

bMuted

Specifies whether the audio stream is currently muted. If bMuted is TRUE, the stream is
muted. If FALSE, the stream is not muted.

fMasterVolume

Specifies the current master volume level of the audio stream. The volume level is
normalized to the range from 0.0 to 1.0, where 0.0 is the minimum volume level and 1.0
is the maximum level. Within this range, the relationship of the normalized volume level
to the attenuation of signal amplitude is described by a nonlinear, audio-tapered curve.
For more information about audio tapers, see Audio-Tapered Volume Controls.

Syntax

typedef struct AUDIO_VOLUME_NOTIFICATION_DATA { 
  GUID  guidEventContext; 
  BOOL  bMuted; 
  float fMasterVolume; 
  UINT  nChannels; 
  float afChannelVolumes[1]; 
} AUDIO_VOLUME_NOTIFICATION_DATA, *PAUDIO_VOLUME_NOTIFICATION_DATA; 

Members

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls


nChannels

Specifies the number of channels in the audio stream, which is also the number of
elements in the afChannelVolumes array. If the audio stream contains n channels, the
channels are numbered from 0 to n-1. The volume level for a particular channel is
contained in the array element whose index matches the channel number.

afChannelVolumes[1]

The first element in an array of channel volumes. This element contains the current
volume level of channel 0 in the audio stream. If the audio stream contains more than
one channel, the volume levels for the additional channels immediately follow the
AUDIO_VOLUME_NOTIFICATION_DATA structure. The volume level for each channel is
normalized to the range from 0.0 to 1.0, where 0.0 is the minimum volume level and 1.0
is the maximum level. Within this range, the relationship of the normalized volume level
to the attenuation of signal amplitude is described by a nonlinear, audio-tapered curve.

This structure is used by the IAudioEndpointVolumeCallback::OnNotify method.

A client can register to be notified when the volume level or muting state of an endpoint
device changes. The following methods can cause such a change:

IAudioEndpointVolume::SetChannelVolumeLevel
IAudioEndpointVolume::SetChannelVolumeLevelScalar
IAudioEndpointVolume::SetMasterVolumeLevel
IAudioEndpointVolume::SetMasterVolumeLevelScalar
IAudioEndpointVolume::SetMute
IAudioEndpointVolume::VolumeStepDown
IAudioEndpointVolume::VolumeStepUp

When a call to one of these methods causes a volume-change event (that is, a change in
the volume level or muting state), the method sends notifications to all clients that have
registered to receive them. The method notifies a client by calling the client's
IAudioEndpointVolumeCallback::OnNotify method. Through the OnNotify call, the
client receives a pointer to an AUDIO_VOLUME_NOTIFICATION_DATA structure that
describes the change.

Each of the methods in the preceding list accepts an input parameter named
pguidEventContext, which is a pointer to an event-context GUID. Before sending
notifications to clients, the method copies the event-context GUID pointed to by
pguidEventContext into the guidEventContext member of the

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmute
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup


Feedback

AUDIO_VOLUME_NOTIFICATION_DATA structure that it supplies to clients through their
OnNotify methods. If pguidEventContext is NULL, the value of the guidEventContext
member is set to GUID_NULL.

In its implementation of the OnNotify method, a client can inspect the event-context
GUID from that call to discover whether it or another client is the source of the volume-
change event.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Header endpointvolume.h

Core Audio Structures

IAudioEndpointVolume Interface

IAudioEndpointVolume::SetChannelVolumeLevel

IAudioEndpointVolume::SetChannelVolumeLevelScalar

IAudioEndpointVolume::SetMasterVolumeLevel

IAudioEndpointVolume::SetMasterVolumeLevelScalar

IAudioEndpointVolume::SetMute

IAudioEndpointVolume::VolumeStepDown

IAudioEndpointVolume::VolumeStepUp

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmute
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointVolume interface
(endpointvolume.h)
Article07/27/2022

The IAudioEndpointVolume interface represents the volume controls on the audio
stream to or from an audio endpoint device. A client obtains a reference to the
IAudioEndpointVolume interface of an endpoint device by calling the
IMMDevice::Activate method with parameter iid set to REFIID
IID_IAudioEndpointVolume.

Audio applications that use the MMDevice API and WASAPI typically use the
ISimpleAudioVolume interface to manage stream volume levels on a per-session basis.
In rare cases, a specialized audio application might require the use of the
IAudioEndpointVolume interface to control the master volume level of an audio
endpoint device. A client of IAudioEndpointVolume must take care to avoid the
potentially disruptive effects on other audio applications of altering the master volume
levels of audio endpoint devices. Typically, the user has exclusive control over the master
volume levels through the Windows volume-control program, Sndvol.exe.

If the adapter device that streams audio data to or from the endpoint device has
hardware volume and mute controls, the IAudioEndpointVolume interface uses those
controls to manage the volume and mute settings of the audio stream. If the audio
device lacks a hardware volume control for the stream, the audio engine automatically
implements volume and mute controls in software.

For applications that manage shared-mode streams to and from endpoint devices, the
behavior of the IAudioEndpointVolume is different for rendering streams and capture
streams.

For a shared-mode rendering stream, the endpoint volume control that the client
accesses through the IAudioEndpointVolume interface operates independently of the
per-session volume controls that the ISimpleAudioVolume and IChannelAudioVolume
interfaces implement. Thus, the volume level of the rendering stream results from the
combined effects of the endpoint volume control and per-session controls.

For a shared-mode capture stream, the per-session volume controls that the
ISimpleAudioVolume and IChannelAudioVolume interfaces implement are tied directly
to the endpoint volume control implemented by the IAudioEndpointVolume interface.
Changing the per-session volume control through the methods in the
ISimpleAudioVolume and IChannelAudioVolume interfaces changes the setting of the

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume


IAudioEndpointVolume interface's volume control, and the reverse is also true. The
volume levels represented by each of the interfaces correspond to each other as follows:

For each channel in a stream, IAudioEndpointVolume provides audio-tapered
volume levels expressed in decibels (dB), that are mapped to normalized values in
the range from 0.0 (minimum volume) to 1.0 (maximum volume). The possible
range is dependent on the audio driver. See
IAudioEndpointVolume::GetVolumeRange for details.
The session volume represented by ISimpleAudioVolume::GetMasterVolume is the
scalar value ranging from 0.0 to 1.0 that corresponds to the highest volume setting
across the various channels. So, for example, if the left channel is set to 0.8, and the
right channel is set to 0.4, then ISimpleAudioVolume::GetMasterVolume will
return 0.8.
When the per-channel volume level is controlled through the methods in the
IChannelAudioVolume interface, the scalar indicating volume is always relative to
the session volume. This means that the channel or channels with the highest
volume has a volume of 1.0. Given the example of two channels, set to volumes of
0.8 and 0.4 by IAudioEndpointVolume::SetChannelVolumeLevelScalar,
IChannelAudioVolume::GetChannelVolume will indicate volumes of 1.0 and 0.5.

 

If a device has hardware volume and mute controls, changes made to the device's
volume and mute settings through the IAudioEndpointVolume interface affect the
volume level in both shared mode and exclusive mode. If a device lacks hardware
volume and mute controls, changes made to the software volume and mute controls
through the IAudioEndpointVolume interface affect the volume level in shared mode,
but not in exclusive mode. In exclusive mode, the client and the device exchange audio
data directly, bypassing the software controls. However, the software controls are
persistent, and volume changes made while the device operates in exclusive mode take
effect when the device switches to shared-mode operation.

To determine whether a device has hardware volume and mute controls, call the
IAudioEndpointVolume::QueryHardwareSupport method.

The methods of the IAudioEndpointVolume interface enable the client to express
volume levels either in decibels or as normalized, audio-tapered values. In the latter
case, a volume level is expressed as a floating-point value in the normalized range from
0.0 (minimum volume) to 1.0 (maximum volume). Within this range, the relationship of

Note  Clients of the EndpointVolume API should not rely on the preceding
behavior because it might change in future releases.

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-isimpleaudiovolume-getmastervolume
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-ichannelaudiovolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-ichannelaudiovolume-getchannelvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-queryhardwaresupport


the normalized volume level to the attenuation of signal amplitude is described by a
nonlinear, audio-tapered curve. For more information about audio-tapered curves, see
Audio-Tapered Volume Controls.

In addition, to conveniently support volume sliders in user interfaces, the
IAudioEndpointVolume interface enables clients to set and get volume levels that are
expressed as discrete values or "steps". The steps are uniformly distributed over a
nonlinear, audio-tapered curve. If the range contains n steps, the steps are numbered
from 0 to n– 1, where step 0 represents the minimum volume level and step n– 1
represents the maximum.

For a code example that uses the IAudioEndpointVolume interface, see Endpoint
Volume Controls.

The IAudioEndpointVolume interface inherits from the IUnknown interface.
IAudioEndpointVolume also has these types of members:

The IAudioEndpointVolume interface has these methods.

 

IAudioEndpointVolume::GetChannelCount  

The GetChannelCount method gets a count of the channels in the audio stream that enters or
leaves the audio endpoint device.

IAudioEndpointVolume::GetChannelVolumeLevel  

The GetChannelVolumeLevel method gets the volume level, in decibels, of the specified channel in
the audio stream that enters or leaves the audio endpoint device.

IAudioEndpointVolume::GetChannelVolumeLevelScalar  

The GetChannelVolumeLevelScalar method gets the normalized, audio-tapered volume level of
the specified channel of the audio stream that enters or leaves the audio endpoint device.

IAudioEndpointVolume::GetMasterVolumeLevel  

The GetMasterVolumeLevel method gets the master volume level, in decibels, of the audio stream
that enters or leaves the audio endpoint device.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IAudioEndpointVolume::GetMasterVolumeLevelScalar  

The GetMasterVolumeLevelScalar method gets the master volume level of the audio stream that
enters or leaves the audio endpoint device. The volume level is expressed as a normalized, audio-
tapered value in the range from 0.0 to 1.0.

IAudioEndpointVolume::GetMute  

The GetMute method gets the muting state of the audio stream that enters or leaves the audio
endpoint device.

IAudioEndpointVolume::GetVolumeRange  

The GetVolumeRange method gets the volume range, in decibels, of the audio stream that enters
or leaves the audio endpoint device.

IAudioEndpointVolume::GetVolumeStepInfo  

The GetVolumeStepInfo method gets information about the current step in the volume range.

IAudioEndpointVolume::QueryHardwareSupport  

The QueryHardwareSupport method queries the audio endpoint device for its hardware-
supported functions. (IAudioEndpointVolume.QueryHardwareSupport)

IAudioEndpointVolume::RegisterControlChangeNotify  

The RegisterControlChangeNotify method registers a client's notification callback interface.

IAudioEndpointVolume::SetChannelVolumeLevel  

The SetChannelVolumeLevel method sets the volume level, in decibels, of the specified channel of
the audio stream that enters or leaves the audio endpoint device.

IAudioEndpointVolume::SetChannelVolumeLevelScalar  

The SetChannelVolumeLevelScalar method sets the normalized, audio-tapered volume level of the
specified channel in the audio stream that enters or leaves the audio endpoint device.

IAudioEndpointVolume::SetMasterVolumeLevel  

The SetMasterVolumeLevel method sets the master volume level, in decibels, of the audio stream
that enters or leaves the audio endpoint device.

IAudioEndpointVolume::SetMasterVolumeLevelScalar  

The SetMasterVolumeLevelScalar method sets the master volume level of the audio stream that
enters or leaves the audio endpoint device. The volume level is expressed as a normalized, audio-
tapered value in the range from 0.0 to 1.0.



 

IAudioEndpointVolume::SetMute  

The SetMute method sets the muting state of the audio stream that enters or leaves the audio
endpoint device.

IAudioEndpointVolume::UnregisterControlChangeNotify  

The UnregisterControlChangeNotify method deletes the registration of a client's notification
callback interface that the client registered in a previous call to the
IAudioEndpointVolume::RegisterControlChangeNotify method.

IAudioEndpointVolume::VolumeStepDown  

The VolumeStepDown method decrements, by one step, the volume level of the audio stream that
enters or leaves the audio endpoint device.

IAudioEndpointVolume::VolumeStepUp  

The VolumeStepUp method increments, by one step, the volume level of the audio stream that
enters or leaves the audio endpoint device.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

Core Audio Interfaces

EndpointVolume API

IMMDevice::Activate

ISimpleAudioVolume Interface

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointVolume::GetChannelCou
nt method (endpointvolume.h)
Article10/13/2021

The GetChannelCount method gets a count of the channels in the audio stream that
enters or leaves the audio endpoint device.

C++

[out] pnChannelCount

Pointer to a UINT variable into which the method writes the channel count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pnChannelCount is NULL.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Syntax

HRESULT GetChannelCount( 
  [out] UINT *pnChannelCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header endpointvolume.h

IAudioEndpointVolume Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


IAudioEndpointVolume::GetChannelVolu
meLevel method (endpointvolume.h)
Article10/13/2021

The GetChannelVolumeLevel method gets the volume level, in decibels, of the specified
channel in the audio stream that enters or leaves the audio endpoint device.

C++

[in] nChannel

The channel number. If the audio stream has n channels, the channels are numbered
from 0 to n– 1. To obtain the number of channels in the stream, call the
IAudioEndpointVolume::GetChannelCount method.

[out] pfLevelDB

Pointer to a float variable into which the method writes the volume level in decibels. To
get the range of volume levels obtained from this method, call the
IAudioEndpointVolume::GetVolumeRange method.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is greater than or equal to the
number of channels in the stream.

E_POINTER Parameter pfLevelDB is NULL.

Syntax

HRESULT GetChannelVolumeLevel( 
  [in]  UINT  nChannel, 
  [out] float *pfLevelDB 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetChannelCount

IAudioEndpointVolume::GetVolumeRange

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange


IAudioEndpointVolume::GetChannelVolu
meLevelScalar method
(endpointvolume.h)
Article10/13/2021

The GetChannelVolumeLevelScalar method gets the normalized, audio-tapered volume
level of the specified channel of the audio stream that enters or leaves the audio
endpoint device.

C++

[in] nChannel

The channel number. If the audio stream contains n channels, the channels are
numbered from 0 to n– 1. To obtain the number of channels, call the
IAudioEndpointVolume::GetChannelCount method.

[out] pfLevel

Pointer to a float variable into which the method writes the volume level. The level is
expressed as a normalized value in the range from 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is greater than or equal to the

Syntax

HRESULT GetChannelVolumeLevelScalar( 
  [in]  UINT  nChannel, 
  [out] float *pfLevel 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

number of channels in the stream.

E_POINTER Parameter pfLevel is NULL.

The volume level is normalized to the range from 0.0 to 1.0, where 0.0 is the minimum
volume level and 1.0 is the maximum level. Within this range, the relationship of the
normalized volume level to the attenuation of signal amplitude is described by a
nonlinear, audio-tapered curve. Note that the shape of the curve might change in future
versions of Windows. For more information about audio-tapered curves, see Audio-
Tapered Volume Controls.

The normalized volume levels that are retrieved by this method are suitable to represent
the positions of volume controls in application windows and on-screen displays.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetChannelCount

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount


IAudioEndpointVolume::GetMasterVolu
meLevel method (endpointvolume.h)
Article10/13/2021

The GetMasterVolumeLevel method gets the master volume level, in decibels, of the
audio stream that enters or leaves the audio endpoint device.

C++

[out] pfLevelDB

Pointer to the master volume level. This parameter points to a float variable into which
the method writes the volume level in decibels. To get the range of volume levels
obtained from this method, call the IAudioEndpointVolume::GetVolumeRange method.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfLevelDB is NULL.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Syntax

HRESULT GetMasterVolumeLevel( 
  [out] float *pfLevelDB 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetVolumeRange

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange


IAudioEndpointVolume::GetMasterVolu
meLevelScalar method
(endpointvolume.h)
Article10/13/2021

The GetMasterVolumeLevelScalar method gets the master volume level of the audio
stream that enters or leaves the audio endpoint device. The volume level is expressed as
a normalized, audio-tapered value in the range from 0.0 to 1.0.

C++

[out] pfLevel

Pointer to the master volume level. This parameter points to a float variable into which
the method writes the volume level. The level is expressed as a normalized value in the
range from 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfLevel is NULL.

The volume level is normalized to the range from 0.0 to 1.0, where 0.0 is the minimum
volume level and 1.0 is the maximum level. Within this range, the relationship of the

Syntax

HRESULT GetMasterVolumeLevelScalar( 
  [out] float *pfLevel 
); 

Parameters

Return value

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

normalized volume level to the attenuation of signal amplitude is described by a
nonlinear, audio-tapered curve. Note that the shape of the curve might change in future
versions of Windows. For more information about audio-tapered curves, see Audio-
Tapered Volume Controls.

The normalized volume levels that are retrieved by this method are suitable to represent
the positions of volume controls in application windows and on-screen displays.

For a code example that calls GetMasterVolumeLevelScalar, see Endpoint Volume
Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


IAudioEndpointVolume::GetMute
method (endpointvolume.h)
Article10/13/2021

The GetMute method gets the muting state of the audio stream that enters or leaves
the audio endpoint device.

C++

[out] pbMute

Pointer to a BOOL variable into which the method writes the muting state. If *pbMute is
TRUE, the stream is muted. If FALSE, the stream is not muted.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pbMute is NULL.

For a code example that calls GetMute, see Endpoint Volume Controls.

Syntax

HRESULT GetMute( 
  [out] BOOL *pbMute 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


IAudioEndpointVolume::GetVolumeRan
ge method (endpointvolume.h)
Article10/13/2021

The GetVolumeRange method gets the volume range, in decibels, of the audio stream
that enters or leaves the audio endpoint device.

C++

[out] pflVolumeMindB

Pointer to the minimum volume level. This parameter points to a float variable into
which the method writes the minimum volume level in decibels. This value remains
constant for the lifetime of the IAudioEndpointVolume interface instance.

[out] pflVolumeMaxdB

Pointer to the maximum volume level. This parameter points to a float variable into
which the method writes the maximum volume level in decibels. This value remains
constant for the lifetime of the IAudioEndpointVolume interface instance.

[out] pflVolumeIncrementdB

Pointer to the volume increment. This parameter points to a float variable into which the
method writes the volume increment in decibels. This increment remains constant for
the lifetime of the IAudioEndpointVolume interface instance.

Syntax

HRESULT GetVolumeRange( 
  [out] float *pflVolumeMindB, 
  [out] float *pflVolumeMaxdB, 
  [out] float *pflVolumeIncrementdB 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfLevelMinDB, pfLevelMaxDB, or
pfVolumeIncrementDB is NULL.

The volume range from vmin = *pfLevelMinDB to vmax = *pfLevelMaxDB is divided into
n uniform intervals of size vinc = *pfVolumeIncrementDB, where

n = (vmax – vmin) / vinc.

The values vmin, vmax, and vinc are measured in decibels. The client can set the volume
level to one of n + 1 discrete values in the range from vmin to vmax.

The IAudioEndpointVolume::SetChannelVolumeLevel and
IAudioEndpointVolume::SetMasterVolumeLevel methods accept only volume levels in
the range from vmin to vmax. If the caller specifies a volume level outside of this range,
the method fails and returns E_INVALIDARG. If the caller specifies a volume level that
falls between two steps in the volume range, the method sets the endpoint volume level
to the step that lies closest to the requested volume level and returns S_OK. However, a
subsequent call to IAudioEndpointVolume::GetChannelVolumeLevel or
IAudioEndpointVolume::GetMasterVolumeLevel retrieves the volume level requested by
the previous call to SetChannelVolumeLevel or SetMasterVolumeLevel, not the step
value.

If the volume control is implemented in hardware, GetVolumeRange describes the
range and granularity of the hardware volume settings. In contrast, the steps that are
reported by the IEndpointVolume::GetVolumeStepInfo method correspond to points on
an audio-tapered curve that are calculated in software by the
IEndpointVolume::VolumeStepDown and IEndpointVolume::VolumeStepUp methods.
Either method first calculates the idealized volume level that corresponds to the next
point on the curve. Next, the method selects the hardware volume setting that is the
best approximation to the idealized level. For more information about audio-tapered
curves, see Audio-Tapered Volume Controls.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetChannelVolumeLevel

IAudioEndpointVolume::GetMasterVolumeLevel

IAudioEndpointVolume::SetChannelVolumeLevel

IAudioEndpointVolume::SetMasterVolumeLevel

IEndpointVolume::GetVolumeStepInfo

IEndpointVolume::VolumeStepDown

IEndpointVolume::VolumeStepUp

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup


IAudioEndpointVolume::GetVolumeStepI
nfo method (endpointvolume.h)
Article10/13/2021

The GetVolumeStepInfo method gets information about the current step in the volume
range.

C++

[out] pnStep

Pointer to a UINT variable into which the method writes the current step index. This
index is a value in the range from 0 to *pStepCount– 1, where 0 represents the minimum
volume level and *pStepCount– 1 represents the maximum level.

[out] pnStepCount

Pointer to a UINT variable into which the method writes the number of steps in the
volume range. This number remains constant for the lifetime of the
IAudioEndpointVolume interface instance.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pnStep and pnStepCount are both NULL.

Syntax

HRESULT GetVolumeStepInfo( 
  [out] UINT *pnStep, 
  [out] UINT *pnStepCount 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


This method represents the volume level of the audio stream that enters or leaves the
audio endpoint device as an index or "step" in a range of discrete volume levels. Output
value *pnStepCount is the number of steps in the range. Output value *pnStep is the step
index of the current volume level. If the number of steps is n = *pnStepCount, then step
index *pnStep can assume values from 0 (minimum volume) to n – 1 (maximum volume).

Over the range from 0 to n – 1, successive intervals between adjacent steps do not
necessarily represent uniform volume increments in either linear signal amplitude or
decibels. In Windows Vista, GetVolumeStepInfo defines the relationship of index to
volume level (signal amplitude) to be an audio-tapered curve. Note that the shape of
the curve might change in future versions of Windows. For more information about
audio-tapered curves, see Audio-Tapered Volume Controls.

Audio applications can call the IAudioEndpointVolume::VolumeStepUp and
IAudioEndpointVolume::VolumeStepDown methods to increase or decrease the volume
level by one interval. Either method first calculates the idealized volume level that
corresponds to the next point on the audio-tapered curve. Next, the method selects the
endpoint volume setting that is the best approximation to the idealized level. To obtain
the range and granularity of the endpoint volume settings, call the
IEndpointVolume::GetVolumeRange method. If the audio endpoint device implements a
hardware volume control, GetVolumeRange describes the hardware volume settings.
Otherwise, the EndpointVolume API implements the endpoint volume control in
software, and GetVolumeRange describes the volume settings of the software-
implemented control.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointVolume::VolumeStepDown

IAudioEndpointVolume::VolumeStepUp

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup


IAudioEndpointVolume::QueryHardware
Support method (endpointvolume.h)
Article07/27/2022

The QueryHardwareSupport method queries the audio endpoint device for its hardware-
supported functions.

C++

[out] pdwHardwareSupportMask

Pointer to a DWORD variable into which the method writes a hardware support mask
that indicates the hardware capabilities of the audio endpoint device. The method can
set the mask to 0 or to the bitwise-OR combination of one or more
ENDPOINT_HARDWARE_SUPPORT_XXX constants.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwHardwareSupportMask is NULL.

This method indicates whether the audio endpoint device implements the following
functions in hardware:

Volume control

Syntax

HRESULT QueryHardwareSupport( 
  [out] DWORD *pdwHardwareSupportMask 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-hardware-support-xxx-constants


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Mute control
Peak meter

The system automatically substitutes a software implementation for any function in the
preceding list that the endpoint device does not implement in hardware.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


IAudioEndpointVolume::RegisterControl
ChangeNotify method
(endpointvolume.h)
Article10/13/2021

The RegisterControlChangeNotify method registers a client's notification callback
interface.

C++

[in] pNotify

Pointer to the IAudioEndpointVolumeCallback interface that the client is registering for
notification callbacks. If the RegisterControlChangeNotify method succeeds, it calls the
AddRef method on the client's IAudioEndpointVolumeCallback interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pNotify is NULL.

This method registers an IAudioEndpointVolumeCallback interface to be called by the
system when the volume level or muting state of an endpoint changes. The caller
implements the IAudioEndpointVolumeCallback interface.

Syntax

HRESULT RegisterControlChangeNotify( 
  [in] IAudioEndpointVolumeCallback *pNotify 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


When notifications are no longer needed, the client can call the
IAudioEndpointVolume::UnregisterControlChangeNotify method to terminate the
notifications.

Before the client releases its final reference to the IAudioEndpointVolumeCallback
interface, it should call UnregisterControlChangeNotify to unregister the interface.
Otherwise, the application leaks the resources held by the
IAudioEndpointVolumeCallback and IAudioEndpointVolume objects. Note that
RegisterControlChangeNotify calls the client's IAudioEndpointVolumeCallback::AddRef
method, and UnregisterControlChangeNotify calls the
IAudioEndpointVolumeCallback::Release method. If the client errs by releasing its
reference to the IAudioEndpointVolumeCallback interface before calling
UnregisterControlChangeNotify, the IAudioEndpointVolume object never releases its
reference to the IAudioEndpointVolumeCallback interface. For example, a poorly
designed IAudioEndpointVolumeCallback implementation might call
UnregisterControlChangeNotify from the destructor for the
IAudioEndpointVolumeCallback object. In this case, the client will not call
UnregisterControlChangeNotify until the IAudioEndpointVolume object releases its
reference to the IAudioEndpointVolumeCallback interface, and the
IAudioEndpointVolume object will not release its reference to the
IAudioEndpointVolumeCallback interface until the client calls
UnregisterControlChangeNotify. For more information about the AddRef and Release
methods, see the discussion of the IUnknown interface in the Windows SDK
documentation.

In addition, the client should call UnregisterControlChangeNotify before releasing the
final reference to the IAudioEndpointVolume object. Otherwise, the object leaks the
storage that it allocated to hold the registration information. After registering a
notification interface, the client continues to receive notifications for only as long as the
IAudioEndpointVolume object exists.

For a code example that calls RegisterControlChangeNotify, see Endpoint Volume
Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::UnregisterControlChangeNotify

IAudioEndpointVolumeCallback Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


IAudioEndpointVolume::SetChannelVolu
meLevel method (endpointvolume.h)
Article10/13/2021

The SetChannelVolumeLevel method sets the volume level, in decibels, of the specified
channel of the audio stream that enters or leaves the audio endpoint device.

C++

[in] nChannel

The channel number. If the audio stream contains n channels, the channels are
numbered from 0 to n– 1. To obtain the number of channels, call the
IAudioEndpointVolume::GetChannelCount method.

[in] fLevelDB

The new volume level in decibels. To obtain the range and granularity of the volume
levels that can be set by this method, call the IAudioEndpointVolume::GetVolumeRange
method.

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the SetChannelVolumeLevel call changes the
volume level of the endpoint, all clients that have registered
IAudioEndpointVolumeCallback interfaces with that endpoint will receive notifications. In
its implementation of the OnNotify method, a client can inspect the event-context GUID
to discover whether it or another client is the source of the volume-change event. If the

Syntax

HRESULT SetChannelVolumeLevel( 
  [in] UINT    nChannel, 
  [in] float   fLevelDB, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


caller supplies a NULL pointer for this parameter, the notification routine receives the
context GUID value GUID_NULL.

If the method succeeds, it returns S_OK. If the method fails, possible return codes
include, but are not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is greater than or equal to the
number of channels in the stream; or parameter fLevelDB
lies outside of the volume range supported by the device.

E_OUTOFMEMORY Out of memory.

If volume level fLevelDB falls outside of the volume range reported by the
IAudioEndpointVolume::GetVolumeRange method, the SetChannelVolumeLevel call
fails and returns error code E_INVALIDARG.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetChannelCount

IAudioEndpointVolume::GetVolumeRange

IAudioEndpointVolumeCallback Interface

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointVolumeCallback::OnNotify

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolume::SetChannelVolu
meLevelScalar method
(endpointvolume.h)
Article10/13/2021

The SetChannelVolumeLevelScalar method sets the normalized, audio-tapered volume
level of the specified channel in the audio stream that enters or leaves the audio
endpoint device.

C++

[in] nChannel

The channel number. If the audio stream contains n channels, the channels are
numbered from 0 to n– 1. To obtain the number of channels, call the
IAudioEndpointVolume::GetChannelCount method.

[in] fLevel

The volume level. The volume level is expressed as a normalized value in the range from
0.0 to 1.0.

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the SetChannelVolumeLevelScalar call changes the
volume level of the endpoint, all clients that have registered
IAudioEndpointVolumeCallback interfaces with that endpoint will receive notifications. In
its implementation of the OnNotify method, a client can inspect the event-context GUID
to discover whether it or another client is the source of the volume-change event. If the

Syntax

HRESULT SetChannelVolumeLevelScalar( 
  [in] UINT    nChannel, 
  [in] float   fLevel, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


caller supplies a NULL pointer for this parameter, the notification routine receives the
context GUID value GUID_NULL.

If the method succeeds, it returns S_OK. If the method fails, possible return codes
include, but are not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter nChannel is greater than or equal to the
number of channels in the stream; or parameter fLevel is
outside the range from 0.0 to 1.0.

E_OUTOFMEMORY Out of memory.

The volume level is normalized to the range from 0.0 to 1.0, where 0.0 is the minimum
volume level and 1.0 is the maximum level. Within this range, the relationship of the
normalized volume level to the attenuation of signal amplitude is described by a
nonlinear, audio-tapered curve. Note that the shape of the curve might change in future
versions of Windows. For more information about audio-tapered curves, see Audio-
Tapered Volume Controls.

The normalized volume levels that are passed to this method are suitable to represent
the positions of volume controls in application windows and on-screen displays.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetChannelCount

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolume::SetMasterVolu
meLevel method (endpointvolume.h)
Article10/13/2021

The SetMasterVolumeLevel method sets the master volume level, in decibels, of the
audio stream that enters or leaves the audio endpoint device.

C++

[in] fLevelDB

The new master volume level in decibels. To obtain the range and granularity of the
volume levels that can be set by this method, call the
IAudioEndpointVolume::GetVolumeRange method.

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the SetMasterVolumeLevel call changes the volume
level of the endpoint, all clients that have registered IAudioEndpointVolumeCallback
interfaces with that endpoint will receive notifications. In its implementation of the
OnNotify method, a client can inspect the event-context GUID to discover whether it or
another client is the source of the volume-change event. If the caller supplies a NULL
pointer for this parameter, the notification routine receives the context GUID value
GUID_NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetMasterVolumeLevel( 
  [in] float   fLevelDB, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

E_INVALIDARG Parameter fLevelDB lies outside of the volume range
supported by the device.

E_OUTOFMEMORY Out of memory.

If volume level fLevelDB falls outside of the volume range reported by the
IAudioEndpointVolume::GetVolumeRange method, the SetMasterVolumeLevel call fails
and returns error code E_INVALIDARG.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetVolumeRange

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumerange
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolume::SetMasterVolu
meLevelScalar method
(endpointvolume.h)
Article10/13/2021

The SetMasterVolumeLevelScalar method sets the master volume level of the audio
stream that enters or leaves the audio endpoint device. The volume level is expressed as
a normalized, audio-tapered value in the range from 0.0 to 1.0.

C++

[in] fLevel

The new master volume level. The level is expressed as a normalized value in the range
from 0.0 to 1.0.

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the SetMasterVolumeLevelScalar call changes the
volume level of the endpoint, all clients that have registered
IAudioEndpointVolumeCallback interfaces with that endpoint will receive notifications. In
its implementation of the OnNotify method, a client can inspect the event-context GUID
to discover whether it or another client is the source of the volume-change event. If the
caller supplies a NULL pointer for this parameter, the notification routine receives the
context GUID value GUID_NULL.

Syntax

HRESULT SetMasterVolumeLevelScalar( 
  [in] float   fLevel, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter fLevel is outside the range from 0.0 to 1.0.

E_OUTOFMEMORY Out of memory.

The volume level is normalized to the range from 0.0 to 1.0, where 0.0 is the minimum
volume level and 1.0 is the maximum level. Within this range, the relationship of the
normalized volume level to the attenuation of signal amplitude is described by a
nonlinear, audio-tapered curve. Note that the shape of the curve might change in future
versions of Windows. For more information about audio-tapered curves, see Audio-
Tapered Volume Controls.

The normalized volume levels that are passed to this method are suitable to represent
the positions of volume controls in application windows and on-screen displays.

For a code example that calls SetMasterVolumeLevelScalar, see Endpoint Volume
Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioEndpointVolume::SetMute
method (endpointvolume.h)
Article10/13/2021

The SetMute method sets the muting state of the audio stream that enters or leaves the
audio endpoint device.

C++

[in] bMute

The new muting state. If bMute is TRUE, the method mutes the stream. If FALSE, the
method turns off muting.

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the SetMute call changes the muting state of the
endpoint, all clients that have registered IAudioEndpointVolumeCallback interfaces with
that endpoint will receive notifications. In its implementation of the OnNotify method, a
client can inspect the event-context GUID to discover whether it or another client is the
source of the control-change event. If the caller supplies a NULL pointer for this
parameter, the notification routine receives the context GUID value GUID_NULL.

If the method succeeds and the muting state changes, the method returns S_OK. If the
method succeeds and the new muting state is the same as the previous muting state,
the method returns S_FALSE. If the method fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT SetMute( 
  [in] BOOL    bMute, 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

E_OUTOFMEMORY Out of memory.

For a code example that calls SetMute, see Endpoint Volume Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolume::UnregisterContr
olChangeNotify method
(endpointvolume.h)
Article10/13/2021

The UnregisterControlChangeNotify method deletes the registration of a client's
notification callback interface that the client registered in a previous call to the
IAudioEndpointVolume::RegisterControlChangeNotify method.

C++

[in] pNotify

Pointer to the client's IAudioEndpointVolumeCallback interface. The client passed this
same interface pointer to the endpoint volume object in a previous call to the
IAudioEndpointVolume::RegisterControlChangeNotify method. If the
UnregisterControlChangeNotify method succeeds, it calls the Release method on the
client's IAudioEndpointVolumeCallback interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pNotify is NULL.

Syntax

HRESULT UnregisterControlChangeNotify( 
  [in] IAudioEndpointVolumeCallback *pNotify 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Before the client releases its final reference to the IAudioEndpointVolumeCallback
interface, it should call UnregisterControlChangeNotify to unregister the interface.
Otherwise, the application leaks the resources held by the
IAudioEndpointVolumeCallback and IAudioEndpointVolume objects. Note that the
IAudioEndpointVolume::RegisterControlChangeNotify method calls the client's
IAudioEndpointVolumeCallback::AddRef method, and UnregisterControlChangeNotify
calls the IAudioEndpointVolumeCallback::Release method. If the client errs by releasing
its reference to the IAudioEndpointVolumeCallback interface before calling
UnregisterControlChangeNotify, the IAudioEndpointVolume object never releases its
reference to the IAudioEndpointVolumeCallback interface. For example, a poorly
designed IAudioEndpointVolumeCallback implementation might call
UnregisterControlChangeNotify from the destructor for the
IAudioEndpointVolumeCallback object. In this case, the client will not call
UnregisterControlChangeNotify until the IAudioEndpointVolume object releases its
reference to the IAudioEndpointVolumeCallback interface, and the
IAudioEndpointVolume object will not release its reference to the
IAudioEndpointVolumeCallback interface until the client calls
UnregisterControlChangeNotify. For more information about the AddRef and Release
methods, see the discussion of the IUnknown interface in the Windows SDK
documentation.

For a code example that calls UnregisterControlChangeNotify, see Endpoint Volume
Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::RegisterControlChangeNotify

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioEndpointVolumeCallback Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


IAudioEndpointVolume::VolumeStepDo
wn method (endpointvolume.h)
Article10/13/2021

The VolumeStepDown method decrements, by one step, the volume level of the audio
stream that enters or leaves the audio endpoint device.

C++

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the VolumeStepDown call changes the volume level
of the endpoint, all clients that have registered IAudioEndpointVolumeCallback
interfaces with that endpoint will receive notifications. In its implementation of the
OnNotify method, a client can inspect the event-context GUID to discover whether it or
another client is the source of the volume-change event. If the caller supplies a NULL
pointer for this parameter, the client's notification method receives a NULL context
pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT VolumeStepDown( 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

To obtain the current volume step and the total number of steps in the volume range,
call the IAudioEndpointVolume::GetVolumeStepInfo method.

If the volume level is already at the lowest step in the volume range, the call to
VolumeStepDown has no effect and returns status code S_OK.

Successive intervals between adjacent steps do not necessarily represent uniform
volume increments in either linear signal amplitude or decibels. In Windows Vista,
VolumeStepDown defines the relationship of step index to volume level (signal
amplitude) to be an audio-tapered curve. Note that the shape of the curve might
change in future versions of Windows. For more information about audio-tapered
curves, see Audio-Tapered Volume Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetVolumeStepInfo

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolume::VolumeStepUp
method (endpointvolume.h)
Article10/13/2021

The VolumeStepUp method increments, by one step, the volume level of the audio
stream that enters or leaves the audio endpoint device.

C++

[in] pguidEventContext

Context value for the IAudioEndpointVolumeCallback::OnNotify method. This parameter
points to an event-context GUID. If the VolumeStepUp call changes the volume level of
the endpoint, all clients that have registered IAudioEndpointVolumeCallback interfaces
with that endpoint will receive notifications. In its implementation of the OnNotify
method, a client can inspect the event-context GUID to discover whether it or another
client is the source of the volume-change event. If the caller supplies a NULL pointer for
this parameter, the client's notification method receives a NULL context pointer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

Syntax

HRESULT VolumeStepUp( 
  [in] LPCGUID pguidEventContext 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

To obtain the current volume step and the total number of steps in the volume range,
call the IAudioEndpointVolume::GetVolumeStepInfo method.

If the volume level is already at the highest step in the volume range, the call to
VolumeStepUp has no effect and returns status code S_OK.

Successive intervals between adjacent steps do not necessarily represent uniform
volume increments in either linear signal amplitude or decibels. In Windows Vista,
VolumeStepUp defines the relationship of step index to volume level (signal amplitude)
to be an audio-tapered curve. Note that the shape of the curve might change in future
versions of Windows. For more information about audio-tapered curves, see Audio-
Tapered Volume Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolume Interface

IAudioEndpointVolume::GetVolumeStepInfo

IAudioEndpointVolumeCallback Interface

IAudioEndpointVolumeCallback::OnNotify

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-tapered-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getvolumestepinfo
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolumecallback-onnotify


IAudioEndpointVolumeCallback
interface (endpointvolume.h)
Article07/22/2021

The IAudioEndpointVolumeCallback interface provides notifications of changes in the
volume level and muting state of an audio endpoint device. Unlike the other interfaces
in this section, which are implemented by the WASAPI system component, an
EndpointVolume API client implements the IAudioEndpointVolumeCallback interface.
To receive event notifications, the client passes a pointer to its
IAudioEndpointVolumeCallback interface to the
IAudioEndpointVolume::RegisterControlChangeNotify method.

After registering its IAudioEndpointVolumeCallback interface, the client receives event
notifications in the form of callbacks through the OnNotify method in the interface.
These event notifications occur when one of the following methods causes a change in
the volume level or muting state of an endpoint device:

IAudioEndpointVolume::SetChannelVolumeLevel
IAudioEndpointVolume::SetChannelVolumeLevelScalar
IAudioEndpointVolume::SetMasterVolumeLevel
IAudioEndpointVolume::SetMasterVolumeLevelScalar
IAudioEndpointVolume::SetMute
IAudioEndpointVolume::VolumeStepDown
IAudioEndpointVolume::VolumeStepUp

If an audio endpoint device implements hardware volume and mute controls, the
IAudioEndpointVolume interface uses the hardware controls to manage the device's
volume. Otherwise, the IAudioEndpointVolume interface implements volume and mute
controls in software, transparently to the client.

If a device has hardware volume and mute controls, changes made to the volume and
mute settings through the methods in the preceding list affect the device's volume in
both shared mode and exclusive mode. If a device lacks hardware volume and mute
controls, changes made to the software volume and mute controls through these
methods affect the device's volume in shared mode, but not in exclusive mode. In
exclusive mode, the client and the device exchange audio data directly, bypassing the
software controls. However, changes made to the software controls through these
methods generate event notifications regardless of whether the device is operating in
shared mode or in exclusive mode. Changes made to the software volume and mute

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setchannelvolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevel
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmastervolumelevelscalar
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-setmute
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepdown
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-volumestepup


controls while the device operates in exclusive mode take effect when the device
switches to shared mode.

To determine whether a device has hardware volume and mute controls, call the
IAudioEndpointVolume::QueryHardwareSupport method.

In implementing the IAudioEndpointVolumeCallback interface, the client should
observe these rules to avoid deadlocks:

The methods in the interface must be nonblocking. The client should never wait on
a synchronization object during an event callback.
The client should never call the
IAudioEndpointVolume::UnregisterControlChangeNotify method during an event
callback.
The client should never release the final reference on an EndpointVolume API
object during an event callback.

For a code example that implements the IAudioEndpointVolumeCallback interface, see
Endpoint Volume Controls.

The IAudioEndpointVolumeCallback interface inherits from the IUnknown interface.
IAudioEndpointVolumeCallback also has these types of members:

The IAudioEndpointVolumeCallback interface has these methods.

 

IAudioEndpointVolumeCallback::OnNotify  

The OnNotify method notifies the client that the volume level or muting state of the audio
endpoint device has changed.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-queryhardwaresupport
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

Core Audio Interfaces

EndpointVolume API

IAudioEndpointVolume::RegisterControlChangeNotify

IAudioEndpointVolume::UnregisterControlChangeNotify

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-registercontrolchangenotify
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-unregistercontrolchangenotify


IAudioEndpointVolumeCallback::OnNoti
fy method (endpointvolume.h)
Article10/13/2021

The OnNotify method notifies the client that the volume level or muting state of the
audio endpoint device has changed.

C++

[in] pNotify

Pointer to the volume-notification data. This parameter points to a structure of type
AUDIO_VOLUME_NOTIFICATION_DATA.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The pNotify parameter points to a structure that describes the volume change event that
initiated the call to OnNotify. This structure contains an event-context GUID. This GUID
enables a client to distinguish between a volume (or muting) change that it initiated and
one that some other client initiated. When calling an IAudioEndpointVolume method
that changes the volume level of the stream, a client passes in a pointer to an event-
context GUID that its implementation of the OnNotify method can recognize. The
structure pointed to by pNotify contains this context GUID. If the client that changes the
volume level supplies a NULL pointer value for the pointer to the event-context GUID,
the value of the event-context GUID in the structure pointed to by pNotify is
GUID_NULL.

Syntax

HRESULT OnNotify( 
  [in] PAUDIO_VOLUME_NOTIFICATION_DATA pNotify 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/ns-endpointvolume-audio_volume_notification_data
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The Windows 7, the system's volume user interface does not specify GUID_NULL when it
changes the volume in the system. A third-party OSD application can differentiate
between master volume control changes that result from the system's volume user
interface, and other volume changes such as changes from the built-in volume control
handler.

For a code example that implements the OnNotify method, see Endpoint Volume
Controls.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

AUDIO_VOLUME_NOTIFICATION_DATA

IAudioEndpointVolume Interface

IAudioEndpointVolumeCallback Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-volume-controls
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/ns-endpointvolume-audio_volume_notification_data
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumecallback


IAudioEndpointVolumeEx interface
(endpointvolume.h)
Article07/22/2021

The IAudioEndpointVolumeEx interface provides volume controls on the audio stream
to or from a device endpoint.

A client obtains a reference to the IAudioEndpointVolumeEx interface of an endpoint
device by calling the IMMDevice::Activate method with parameter iid set to REFIID
IID_IAudioEndpointVolumeEx.

The IAudioEndpointVolumeEx interface inherits from IAudioEndpointVolume.
IAudioEndpointVolumeEx also has these types of members:

The IAudioEndpointVolumeEx interface has these methods.

 

IAudioEndpointVolumeEx::GetVolumeRangeChannel  

The GetVolumeRangeChannel method gets the volume range for a specified channel.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header endpointvolume.h

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

EndpointVolume API

IAudioEndpointVolume

IMMDevice::Activate

ISimpleAudioVolume Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-isimpleaudiovolume


IAudioEndpointVolumeEx::GetVolumeRa
ngeChannel method
(endpointvolume.h)
Article10/13/2021

The GetVolumeRangeChannel method gets the volume range for a specified channel.

C++

[in] iChannel

The channel number for which to get the volume range. If the audio stream has n
channels, the channels are numbered from 0 to n– 1. To obtain the number of channels
in the stream, call the IAudioEndpointVolume::GetChannelCount method.

[out] pflVolumeMindB

Receives the minimum volume level for the channel, in decibels.

[out] pflVolumeMaxdB

Receives the maximum volume level for the channel, in decibels.

[out] pflVolumeIncrementdB

Receives the volume increment for the channel, in decibels.

Syntax

HRESULT GetVolumeRangeChannel( 
  [in]  UINT  iChannel, 
  [out] float *pflVolumeMindB, 
  [out] float *pflVolumeMaxdB, 
  [out] float *pflVolumeIncrementdB 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudioendpointvolume-getchannelcount


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfLevelMinDB, pfLevelMaxDB, or
pfVolumeIncrementDB is NULL.

   

Minimum supported client Windows 7 [desktop apps only]

Minimum supported server Windows Server 2008 R2 [desktop apps only]

Target Platform Windows

Header endpointvolume.h

IAudioEndpointVolumeEx

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolumeex


IAudioMeterInformation interface
(endpointvolume.h)
Article07/27/2022

The IAudioMeterInformation interface represents a peak meter on an audio stream to
or from an audio endpoint device. The client obtains a reference to the
IAudioMeterInformation interface on an endpoint object by calling the
IMMDevice::Activate method with parameter iid set to REFIID
IID_IAudioMeterInformation.

If the adapter device that streams audio data to or from the endpoint device
implements a hardware peak meter, the IAudioMeterInformation interface uses that
meter to monitor the peak levels in the audio stream. If the audio device lacks a
hardware peak meter, the audio engine automatically implements the peak meter in
software, transparently to the client.

If a device has a hardware peak meter, a client can use the methods in the
IAudioMeterInformation interface to monitor the device's peak levels in both shared
mode and exclusive mode. If a device lacks a hardware peak meter, a client can use
those methods to monitor the device's peak levels in shared mode, but not in exclusive
mode. In exclusive mode, the client and the device exchange audio data directly,
bypassing the software peak meter. In exclusive mode, a software peak meter always
reports a peak value of 0.0.

To determine whether a device has a hardware peak meter, call the
IAudioMeterInformation::QueryHardwareSupport method.

For a rendering endpoint device, the IAudioMeterInformation interface monitors the
peak levels in the output stream before the stream is attenuated by the endpoint
volume controls. Similarly, for a capture endpoint device, the interface monitors the
peak levels in the input stream before the stream is attenuated by the endpoint volume
controls.

The peak values reported by the methods in the IAudioMeterInformation interface are
normalized to the range from 0.0 to 1.0. For example, if a PCM stream contains 16-bit
samples, and the peak sample value during a particular metering period is –8914, then
the absolute value recorded by the peak meter is 8914, and the normalized peak value
reported by the IAudioMeterInformation interface is 8914/32768 = 0.272.

For a code example that uses the IAudioMeterInformation interface, see Peak Meters.

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudiometerinformation-queryhardwaresupport
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/peak-meters


The IAudioMeterInformation interface inherits from the IUnknown interface.
IAudioMeterInformation also has these types of members:

The IAudioMeterInformation interface has these methods.

 

IAudioMeterInformation::GetChannelsPeakValues  

The GetChannelsPeakValues method gets the peak sample values for all the channels in the audio
stream.

IAudioMeterInformation::GetMeteringChannelCount  

The GetMeteringChannelCount method gets the number of channels in the audio stream that are
monitored by peak meters.

IAudioMeterInformation::GetPeakValue  

The GetPeakValue method gets the peak sample value for the channels in the audio stream.

IAudioMeterInformation::QueryHardwareSupport  

The QueryHardwareSupport method queries the audio endpoint device for its hardware-
supported functions. (IAudioMeterInformation.QueryHardwareSupport)

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

Core Audio Interfaces

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces


Feedback

Was this page helpful?

Get help at Microsoft Q&A

EndpointVolume API

IMMDevice::Activate

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpointvolume-api
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate


IAudioMeterInformation::GetChannelsP
eakValues method (endpointvolume.h)
Article10/13/2021

The GetChannelsPeakValues method gets the peak sample values for all the channels in
the audio stream.

C++

[in] u32ChannelCount

The channel count. This parameter also specifies the number of elements in the
afPeakValues array. If the specified count does not match the number of channels in the
stream, the method returns error code E_INVALIDARG.

[out] afPeakValues

Pointer to an array of peak sample values. The method writes the peak values for the
channels into the array. The array contains one element for each channel in the stream.
The peak values are numbers in the normalized range from 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter u32ChannelCount does not equal the number
of channels in the audio stream.

E_POINTER Parameter afPeakValues is NULL.

Syntax

HRESULT GetChannelsPeakValues( 
  [in]  UINT32 u32ChannelCount, 
  [out] float  *afPeakValues 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

This method retrieves the peak sample values for the channels in the stream. The peak
value for each channel is recorded over one device period and made available during
the subsequent device period. Thus, this method always retrieves the peak values
recorded during the previous device period. To obtain the device period, call the
IAudioClient::GetDevicePeriod method.

Parameter afPeakValues points to a caller-allocated float array. If the stream contains n
channels, the channels are numbered 0 to n– 1. The method stores the peak value for
each channel in the array element whose array index matches the channel number. To
get the number of channels in the audio stream that are monitored by peak meters, call
the IAudioMeterInformation::GetMeteringChannelCount method.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioClient::GetDevicePeriod

IAudioMeterInformation Interface

IAudioMeterInformation::GetMeteringChannelCount

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudiometerinformation-getmeteringchannelcount
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nf-endpointvolume-iaudiometerinformation-getmeteringchannelcount


IAudioMeterInformation::GetMeteringC
hannelCount method
(endpointvolume.h)
Article10/13/2021

The GetMeteringChannelCount method gets the number of channels in the audio
stream that are monitored by peak meters.

C++

[out] pnChannelCount

Pointer to a UINT variable into which the method writes the number of channels.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pnChannelCount is NULL.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Syntax

HRESULT GetMeteringChannelCount( 
  [out] UINT *pnChannelCount 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header endpointvolume.h

IAudioMeterInformation Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation


IAudioMeterInformation::GetPeakValue
method (endpointvolume.h)
Article10/13/2021

The GetPeakValue method gets the peak sample value for the channels in the audio
stream.

C++

[out] pfPeak

Pointer to a float variable into which the method writes the peak sample value for the
audio stream. The peak value is a number in the normalized range from 0.0 to 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pfPeak is NULL.

This method retrieves the peak sample value recorded across all of the channels in the
stream. The peak value for each channel is recorded over one device period and made
available during the subsequent device period. Thus, this method always retrieves the
peak value recorded during the previous device period. To obtain the device period, call
the IAudioClient::GetDevicePeriod method.

Syntax

HRESULT GetPeakValue( 
  [out] float *pfPeak 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod


Feedback

Was this page helpful?

Get help at Microsoft Q&A

For a code example that uses the GetPeakValue method, see Peak Meters.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioClient::GetDevicePeriod

IAudioMeterInformation Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/peak-meters
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-getdeviceperiod
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation


IAudioMeterInformation::QueryHardwar
eSupport method (endpointvolume.h)
Article07/27/2022

The QueryHardwareSupport method queries the audio endpoint device for its
hardware-supported functions.

C++

[out] pdwHardwareSupportMask

Pointer to a DWORD variable into which the method writes a hardware support mask
that indicates the hardware capabilities of the audio endpoint device. The method can
set the mask to 0 or to the bitwise-OR combination of one or more
ENDPOINT_HARDWARE_SUPPORT_XXX constants.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwHardwareSupportMask is NULL.

This method indicates whether the audio endpoint device implements the following
functions in hardware:

Volume control

Syntax

HRESULT QueryHardwareSupport( 
  [out] DWORD *pdwHardwareSupportMask 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-hardware-support-xxx-constants


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Mute control
Peak meter

The system automatically substitutes a software implementation for any function in the
preceding list that the endpoint devices does not implement in hardware.

   

Minimum supported client Windows Vista [desktop apps | UWP apps]

Minimum supported server Windows Server 2008 [desktop apps | UWP apps]

Target Platform Windows

Header endpointvolume.h

IAudioMeterInformation Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation


mmdeviceapi.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

mmdeviceapi.h contains the following programming interfaces:

 

IActivateAudioInterfaceAsyncOperation  

Represents an asynchronous operation activating a WASAPI interface and provides a method to
retrieve the results of the activation.

IActivateAudioInterfaceCompletionHandler  

Provides a callback to indicate that activation of a WASAPI interface is complete.

IAudioSystemEffectsPropertyChangeNotificationClient  

A callback interface implemented by clients to receive notifications when audio system effect
properties change.

IAudioSystemEffectsPropertyStore  

Provides access to manage audio system effects audio stores and to register for notifications
when audio system effect properties change.

IMMDevice  

The IMMDevice interface encapsulates the generic features of a multimedia device resource.

IMMDeviceCollection  

The IMMDeviceCollection interface represents a collection of multimedia device resources.

IMMDeviceEnumerator  

The IMMDeviceEnumerator interface provides methods for enumerating multimedia device
resources.

Interfaces

https://learn.microsoft.com/en-us/windows/win32/api/mmdeviceapi/nn-mmdeviceapi-iaudiosystemeffectspropertychangenotificationclient
https://learn.microsoft.com/en-us/windows/win32/api/mmdeviceapi/nn-mmdeviceapi-iaudiosystemeffectspropertystore


 

IMMEndpoint  

The IMMEndpoint interface represents an audio endpoint device.

IMMNotificationClient  

The IMMNotificationClient interface provides notifications when an audio endpoint device is
added or removed, when the state or properties of an endpoint device change, or when there is a
change in the default role assigned to an endpoint device.

 

ActivateAudioInterfaceAsync  

Enables Windows Store apps to access preexisting Component Object Model (COM) interfaces in
the WASAPI family.

 

AudioExtensionParams  

This structure is passed to the Control Panel Endpoint Extension property page through
IShellPropSheetExt::AddPages and is used to create endpoint PropertyPages.

DIRECTX_AUDIO_ACTIVATION_PARAMS  

The DIRECTX_AUDIO_ACTIVATION_PARAMS structure specifies the initialization parameters for a
DirectSound stream.

 

AUDIO_SYSTEMEFFECTS_PROPERTYSTORE_TYPE  

Specifies the type of an audio system effects property store.

Functions

Structures

Enumerations

https://learn.microsoft.com/en-us/windows/win32/api/mmdeviceapi/ne-mmdeviceapi-audio_systemeffects_propertystore_type


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

EDataFlow  

The EDataFlow enumeration defines constants that indicate the direction in which audio data
flows between an audio endpoint device and an application.

EndpointFormFactor  

The EndpointFormFactor enumeration defines constants that indicate the general physical
attributes of an audio endpoint device.

ERole  

The ERole enumeration defines constants that indicate the role that the system has assigned to an
audio endpoint device.

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ActivateAudioInterfaceAsync function
(mmdeviceapi.h)
Article10/13/2021

Enables Windows Store apps to access preexisting Component Object Model (COM)
interfaces in the WASAPI family.

C++

[in] deviceInterfacePath

A device interface ID for an audio device. This is normally retrieved from a
DeviceInformation object or one of the methods of the MediaDevice class.

The GUIDs DEVINTERFACE_AUDIO_CAPTURE and DEVINTERFACE_AUDIO_RENDER
represent the default audio capture and render device respectively. Call StringFromIID to
convert either of these GUIDs to an LPCWSTR to use for this argument.

Specify AUDIOCLIENT_ACTIVATION_TYPE_PROCESS_LOOPBACK to activate the audio
interface for process loopback capture. For sample code that demonstrates the process
loopback capture scenario, see the Application Loopback API Capture Sample.

[in] riid

The IID of a COM interface in the WASAPI family, such as IAudioClient.

[in] activationParams

Interface-specific activation parameters. For more information, see the
pActivationParams parameter in IMMDevice::Activate.

Syntax

HRESULT ActivateAudioInterfaceAsync( 
  [in] LPCWSTR                                  deviceInterfacePath, 
  [in] REFIID                                   riid, 
  [in] PROPVARIANT                              *activationParams, 
  [in] IActivateAudioInterfaceCompletionHandler *completionHandler, 
       IActivateAudioInterfaceAsyncOperation    **activationOperation 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/uwp/api/windows.devices.enumeration.deviceinformation
https://learn.microsoft.com/en-us/uwp/api/windows.media.devices.mediadevice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/devinterface-xxx-guids
https://learn.microsoft.com/en-us/windows/desktop/api/combaseapi/nf-combaseapi-stringfromiid
https://learn.microsoft.com/en-us/samples/microsoft/windows-classic-samples/applicationloopbackaudio-sample/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate


Starting with TBD, you can specify AUDIOCLIENT_ACTIVATION_PARAMS to activate the
interface to include or exclude audio streams associated with a specified process ID.

[in] completionHandler

An interface implemented by the caller that is called by Windows when the result of the
activation procedure is available.

activationOperation

Returns an IActivateAudioInterfaceAsyncOperation interface that represents the
asynchronous operation of activating the requested WASAPI interface.

The function returns an HRESULT. Possible values include, but are not limited to, those
in the following table.

Return code Description

S_OK The underlying object and asynchronous operation were
created successfully.

E_ILLEGAL_METHOD_CALL On versions of Windows previous to Windows 10, this
error may result if the function is called from an incorrect
COM apartment, or if the passed
IActivateAudioInterfaceCompletionHandler is not
implemented on an agile object (aggregating a free-
threaded marshaler).

This function enables Windows Store apps to activate certain WASAPI COM interfaces
after using Windows Runtime APIs in the Windows.Devices and Windows.Media.Devices
namespaces to select an audio device.

For many implementations, an application must call this function from the main UI
thread to activate a COM interface in the WASAPI family so that the system can show a
dialog to the user. The application passes an IActivateAudioInterfaceCompletionHandler
callback COM interface through completionHandler. Windows calls a method in the
application’s IActivateAudioInterfaceCompletionHandler interface from a worker
thread in the COM Multi-threaded Apartment (MTA) when the activation results are
available. The application can then call a method in the

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclientactivationparams/ns-audioclientactivationparams-audioclient_activation_params
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/uwp/api/windows.media.devices
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler


IActivateAudioInterfaceAsyncOperation interface to retrieve the result code and the
requested WASAPI interface. There are some activations that are explicitly safe and
therefore don't require that this function be called from the main UI thread. These
explicitly safe activations include:

Calling ActivateAudioInterfaceAsync with a deviceInterfacePath that specifies an
audio render device and an riid that specifies the IAudioClient interface.
Calling ActivateAudioInterfaceAsync with a deviceInterfacePath that specifies an
audio render device and an riid that specifies the IAudioEndpointVolume interface.
Calling ActivateAudioInterfaceAsync from a session 0 service. For more
information, see Services.

Windows holds a reference to the application's
IActivateAudioInterfaceCompletionHandler interface until the operation is complete and
the application releases the IActivateAudioInterfaceAsyncOperation interface.

 
Depending on which WASAPI interface is activated, this function may display a consent
prompt the first time it is called. For example, when the application calls this function to
activate IAudioClient to access a microphone, the purpose of the consent prompt is to
get the user's permission for the app to access the microphone. For more information
about the consent prompt, see Guidelines for devices that access personal data.

ActivateAudioInterfaceAsync must be called on the main UI thread so that the consent
prompt can be shown. If the consent prompt can’t be shown, the user can’t grant device
access to the app.

On versions of Windows previous to Windows 10, ActivateAudioInterfaceAsync must
be called on a thread in a COM Single-Threaded Apartment (STA), when opening a
device for audio capture. The completionHandler that is passed into
ActivateAudioInterfaceAsync needs to implement IAgileObject to ensure that there is
no deadlock when the completionHandler is called from the MTA. Otherwise, an
E_ILLEGAL_METHOD_CALL will occur.

Important  

Applications must not free the object implementing the
IActivateAudioInterfaceCompletionHandler until the completion handler callback
has executed.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/services/services
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/uwp/security/index
https://learn.microsoft.com/en-us/windows/desktop/api/objidl/nn-objidl-iagileobject


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header mmdeviceapi.h (include Mmdevapi.idl)

Library Mmdevapi.lib

DLL Mmdevapi.dll

IRQL No

Core Audio Functions

IActivateAudioInterfaceAsyncOperation

IActivateAudioInterfaceCompletionHandler

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-functions
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler


AudioExtensionParams structure
(mmdeviceapi.h)
Article04/02/2021

This structure is passed to the Control Panel Endpoint Extension property page through
IShellPropSheetExt::AddPages and is used to create endpoint PropertyPages.

C++

AddPageParam

The add page param.

pEndpoint

Pointer to the end point.

pPnpInterface

Pointer to the Pnp interface.

pPnpDevnode

Pointer to the Pnp devnode.

   

Minimum supported client Windows 8 [desktop apps only]

Syntax

typedef struct __MIDL___MIDL_itf_mmdeviceapi_0000_0008_0001 { 
  LPARAM    AddPageParam; 
  IMMDevice *pEndpoint; 
  IMMDevice *pPnpInterface; 
  IMMDevice *pPnpDevnode; 
} AudioExtensionParams; 

Members

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellpropsheetext-addpages


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2012 [desktop apps only]

Header mmdeviceapi.h (include Mmdevapi.idl)

Core Audio Structures

IShellPropSheetExt::AddPages

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellpropsheetext-addpages


DIRECTX_AUDIO_ACTIVATION_PARAMS
structure (mmdeviceapi.h)
Article04/02/2021

The DIRECTX_AUDIO_ACTIVATION_PARAMS structure specifies the initialization
parameters for a DirectSound stream.

C++

cbDirectXAudioActivationParams

The size, in bytes, of the DIRECTX_AUDIO_ACTIVATION_PARAMS structure. Set this
member to sizeof(DIRECTX_AUDIO_ACTIVATION_PARAMS).

guidAudioSession

Session GUID. This member is a GUID value that identifies the audio session that the
stream belongs to. If the GUID identifies a session that has been previously opened, the
method adds the stream to that session. If the GUID does not identify an existing
session, the method opens a new session and adds the stream to that session. The
stream remains a member of the same session for its lifetime.

dwAudioStreamFlags

Stream-initialization flags. This member specifies whether the stream belongs to a cross-
process session or to a session that is specific to the current process. Set this member to
0 or to the following AUDCLNT_STREAMFLAGS_XXX constant:

AUDCLNT_STREAMFLAGS_CROSSPROCESS

Syntax

typedef struct tagDIRECTX_AUDIO_ACTIVATION_PARAMS { 
  DWORD cbDirectXAudioActivationParams; 
  GUID  guidAudioSession; 
  DWORD dwAudioStreamFlags; 
} DIRECTX_AUDIO_ACTIVATION_PARAMS, *PDIRECTX_AUDIO_ACTIVATION_PARAMS; 

Members

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audclnt-streamflags-xxx-constants


Feedback

Was this page helpful?

Get help at Microsoft Q&A

This structure is used by the IMMDevice::Activate method. When activating an
IDirectSound, IDirectSoundCapture, or IBaseFilter interface on an audio endpoint
device, the DIRECTX_AUDIO_ACTIVATION_PARAMS structure specifies the session GUID
and stream-initialization flags for the audio stream that the DirectSound module creates
and encapsulates in the interface instance. During the Activate call, DirectSound calls
the IAudioClient::Initialize method and specifies the session GUID and stream-
initialization flags from the DIRECTX_AUDIO_ACTIVATION_PARAMS structure as input
parameters.

For more information about IDirectSound, IDirectSoundCapture, and IBaseFilter, see
the Windows SDK documentation.

For a code example that uses the DIRECTX_AUDIO_ACTIVATION_PARAMS structure, see
Device Roles for DirectShow Applications.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header mmdeviceapi.h

Core Audio Structures

IAudioClient::Initialize

IMMDevice::Activate

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-for-directshow-applications
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-structures
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-initialize
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate


EDataFlow enumeration
(mmdeviceapi.h)
Article01/31/2022

The EDataFlow enumeration defines constants that indicate the direction in which audio
data flows between an audio endpoint device and an application.

C++

 

eRender  
Value: 0 
Audio rendering stream. Audio data flows from the application to the audio endpoint device,
which renders the stream.

eCapture  
Audio capture stream. Audio data flows from the audio endpoint device that captures the stream,
to the application.

eAll  
Audio rendering or capture stream. Audio data can flow either from the application to the audio
endpoint device, or from the audio endpoint device to the application.

EDataFlow_enum_count  
The number of members in the EDataFlow enumeration (not counting the EDataFlow_enum_count
member).

Syntax

typedef enum __MIDL___MIDL_itf_mmdeviceapi_0000_0000_0001 { 
  eRender = 0, 
  eCapture, 
  eAll, 
  EDataFlow_enum_count 
} EDataFlow; 

Constants

Remarks



Feedback

Was this page helpful?

Get help at Microsoft Q&A

The IMMDeviceEnumerator::GetDefaultAudioEndpoint,
IMMDeviceEnumerator::EnumAudioEndpoints, IMMEndpoint::GetDataFlow, and
IMMNotificationClient::OnDefaultDeviceChanged methods use the constants defined in
the EDataFlow enumeration.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header mmdeviceapi.h

Core Audio Enumerations

IMMDeviceEnumerator::EnumAudioEndpoints

IMMDeviceEnumerator::GetDefaultAudioEndpoint

IMMEndpoint::GetDataFlow

IMMNotificationClient::OnDefaultDeviceChanged

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immendpoint-getdataflow
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immnotificationclient-ondefaultdevicechanged
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immendpoint-getdataflow
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immnotificationclient-ondefaultdevicechanged


EndpointFormFactor enumeration
(mmdeviceapi.h)
Article07/18/2023

The EndpointFormFactor enumeration defines constants that indicate the general
physical attributes of an audio endpoint device.

C++

 

RemoteNetworkDevice

Value: 0
An audio endpoint device that the user accesses remotely through a network.

Speakers

A set of speakers.

LineLevel

An audio endpoint device that sends a line-level analog signal to a line-input jack on an audio
adapter or that receives a line-level analog signal from a line-output jack on the adapter.

Headphones

A set of headphones.

Syntax

typedef enum __MIDL___MIDL_itf_mmdeviceapi_0000_0000_0003 {
  RemoteNetworkDevice = 0,
  Speakers,
  LineLevel,
  Headphones,
  Microphone,
  Headset,
  Handset,
  UnknownDigitalPassthrough,
  SPDIF,
  DigitalAudioDisplayDevice,
  UnknownFormFactor,
  EndpointFormFactor_enum_count
} EndpointFormFactor;

Constants



 

Microphone

A microphone.

Headset

An earphone or a pair of earphones with an attached mouthpiece for two-way communication.

Handset

The part of a telephone that is held in the hand and that contains a speaker and a microphone for
two-way communication.

UnknownDigitalPassthrough

An audio endpoint device that connects to an audio adapter through a connector for a digital
interface of unknown type that transmits non-PCM data in digital pass-through mode. For more
information, see Remarks.

SPDIF

An audio endpoint device that connects to an audio adapter through a Sony/Philips Digital
Interface (S/PDIF) connector.

DigitalAudioDisplayDevice

An audio endpoint device that connects to an audio adapter through a High-Definition
Multimedia Interface (HDMI) connector or a display port.

In Windows Vista, this value was named HDMI.

UnknownFormFactor

An audio endpoint device with unknown physical attributes.

EndpointFormFactor_enum_count

Windows 7: Maximum number of endpoint form factors.

The constants in this enumeration are the values that can be assigned to the
PKEY_AudioEndpoint_FormFactor property.

In digital pass-through mode, a digital interface transports blocks of non-PCM data
through a connection without modifying them and without attempting to interpret their
contents. For more information about digital pass-through mode, see S/PDIF Pass-
Through Transmission of Non-PCM Streams.

For information about obtaining a description of the audio jack or connector through
which an audio endpoint device connects to an audio adapter, see
IKsJackDescription::GetJackDescription and IKsJackDescription2::GetJackDescription2.

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/pkey-audioendpoint-formfactor
https://learn.microsoft.com/en-us/windows-hardware/drivers/audio/s-pdif-pass-through-transmission-of-non-pcm-streams
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription2-getjackdescription2


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header mmdeviceapi.h

Core Audio Enumerations

IKsJackDescription::GetJackDescription

PKEY_AudioEndpoint_FormFactor Property

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nf-devicetopology-iksjackdescription-getjackdescription
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/pkey-audioendpoint-formfactor


ERole enumeration (mmdeviceapi.h)
Article01/31/2022

The ERole enumeration defines constants that indicate the role that the system has
assigned to an audio endpoint device.

C++

 

eConsole  
Value: 0 
Games, system notification sounds, and voice commands.

eMultimedia  
Music, movies, narration, and live music recording.

eCommunications  
Voice communications (talking to another person).

ERole_enum_count  
The number of members in the ERole enumeration (not counting the ERole_enum_count
member).

The IMMDeviceEnumerator::GetDefaultAudioEndpoint and
IMMNotificationClient::OnDefaultDeviceChanged methods use the constants defined in
the ERole enumeration.

For more information, see Device Roles.

Syntax

typedef enum __MIDL___MIDL_itf_mmdeviceapi_0000_0000_0002 { 
  eConsole = 0, 
  eMultimedia, 
  eCommunications, 
  ERole_enum_count 
} ERole; 

Constants

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immnotificationclient-ondefaultdevicechanged
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Header mmdeviceapi.h

Core Audio Enumerations

IMMDeviceEnumerator::GetDefaultAudioEndpoint

IMMNotificationClient::OnDefaultDeviceChanged

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-enumerations
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immnotificationclient-ondefaultdevicechanged


IActivateAudioInterfaceAsyncOperation
interface (mmdeviceapi.h)
Article07/22/2021

Represents an asynchronous operation activating a WASAPI interface and provides a
method to retrieve the results of the activation.

The IActivateAudioInterfaceAsyncOperation interface inherits from the IUnknown
interface. IActivateAudioInterfaceAsyncOperation also has these types of members:

The IActivateAudioInterfaceAsyncOperation interface has these methods.

 

IActivateAudioInterfaceAsyncOperation::GetActivateResult  

Gets the results of an asynchronous activation of a WASAPI interface initiated by an application
calling the ActivateAudioInterfaceAsync function.

When to implement: 
Implemented by Windows and returned from the function ActivateAudioInterfaceAsync.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header mmdeviceapi.h

Inheritance

Methods

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ActivateAudioInterfaceAsync

Core Audio Interfaces

IActivateAudioInterfaceCompletionHandler

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler


IActivateAudioInterfaceAsyncOperation:
:GetActivateResult method
(mmdeviceapi.h)
Article10/13/2021

Gets the results of an asynchronous activation of a WASAPI interface initiated by an
application calling the ActivateAudioInterfaceAsync function.

C++

[out] activateResult

[out] activatedInterface

The function returns an HRESULT. Possible values include, but are not limited to, those
in the following table.

Return code Description

E_ILLEGAL_METHOD_CALL The method was called before the asynchronous
operation was complete.

An application calls this method after Windows calls the ActivateCompleted method of
the application’s IActivateAudioInterfaceCompletionHandler interface.

Syntax

HRESULT GetActivateResult( 
  [out] HRESULT  *activateResult,
  [out] IUnknown **activatedInterface 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-iactivateaudiointerfacecompletionhandler-activatecompleted
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The result code returned through activateResult may depend on the requested interface.
For additional information, see IMMDevice::Activate. A result code of E_ACCESSDENIED
might indicate that the user has not given consent to access the device in a manner
required by the requested WASAPI interface.

The returned activatedInterface may be NULL if activateResult is not a success code.

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header mmdeviceapi.h

ActivateAudioInterfaceAsync

IActivateAudioInterfaceAsyncOperation

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-activate
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation


IActivateAudioInterfaceCompletionHan
dler interface (mmdeviceapi.h)
Article07/22/2021

Provides a callback to indicate that activation of a WASAPI interface is complete.

The IActivateAudioInterfaceCompletionHandler interface inherits from the IUnknown
interface. IActivateAudioInterfaceCompletionHandler also has these types of members:

The IActivateAudioInterfaceCompletionHandler interface has these methods.

 

IActivateAudioInterfaceCompletionHandler::ActivateCompleted  

Indicates that activation of a WASAPI interface is complete and results are available.

When to implement: 
An application implements this interface if it calls the ActivateAudioInterfaceAsync
function.

The implementation must be agile (aggregating a free-threaded marshaler).

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header mmdeviceapi.h

Inheritance

Methods

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ActivateAudioInterfaceAsync

Core Audio Interfaces

IActivateAudioInterfaceAsyncOperation

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation


IActivateAudioInterfaceCompletionHan
dler::ActivateCompleted method
(mmdeviceapi.h)
Article10/13/2021

Indicates that activation of a WASAPI interface is complete and results are available.

C++

[in] activateOperation

An interface representing the asynchronous operation of activating the requested
WASAPI interface

The function returns an HRESULT. Possible values include, but are not limited to, those
in the following table.

Return code Description

S_OK The function succeeded.

An application implements this method if it calls the ActivateAudioInterfaceAsync
function. When Windows calls this method, the results of the activation are available.
The application can then retrieve the results by calling the GetActivateResult method of
the IActivateAudioInterfaceAsyncOperation interface, passed through the
activateOperation parameter.

Syntax

HRESULT ActivateCompleted( 
  [in] IActivateAudioInterfaceAsyncOperation *activateOperation 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/wasapi
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-iactivateaudiointerfaceasyncoperation-getactivateresult
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfaceasyncoperation


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 8 [desktop apps | UWP apps]

Minimum supported server Windows Server 2012 [desktop apps | UWP apps]

Target Platform Windows

Header mmdeviceapi.h

ActivateAudioInterfaceAsync

IActivateAudioInterfaceCompletionHandler

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-iactivateaudiointerfacecompletionhandler


IMMDevice interface (mmdeviceapi.h)
Article07/22/2021

The IMMDevice interface encapsulates the generic features of a multimedia device
resource. In the current implementation of the MMDevice API, the only type of device
resource that an IMMDevice interface can represent is an audio endpoint device.

A client can obtain an IMMDevice interface from one of the following methods:

IMMDeviceCollection::Item
IMMDeviceEnumerator::GetDefaultAudioEndpoint
IMMDeviceEnumerator::GetDevice

For more information, see IMMDeviceCollection Interface.

After obtaining the IMMDevice interface of an audio endpoint device, a client can
obtain an interface that encapsulates the endpoint-specific features of the device by
calling the IMMDevice::QueryInterface method with parameter iid set to REFIID
IID_IMMEndpoint. For more information, see IMMEndpoint Interface.

For code examples that use the IMMDevice interface, see the following topics:

Device Properties
Rendering a Stream
Device Roles for Legacy Windows Multimedia Applications

The IMMDevice interface inherits from the IUnknown interface. IMMDevice also has
these types of members:

The IMMDevice interface has these methods.

 

IMMDevice::Activate  

The Activate method creates a COM object with the specified interface.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-item
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immendpoint
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-for-legacy-windows-multimedia-applications
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

 

IMMDevice::GetId  

The GetId method retrieves an endpoint ID string that identifies the audio endpoint device.

IMMDevice::GetState  

The GetState method retrieves the current device state.

IMMDevice::OpenPropertyStore  

The OpenPropertyStore method retrieves an interface to the device's property store.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Core Audio Interfaces

IMMDeviceCollection Interface

IMMDeviceCollection::Item

IMMDeviceEnumerator::GetDefaultAudioEndpoint

IMMDeviceEnumerator::GetDevice

IMMEndpoint Interface

MMDevice API

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-item
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immendpoint
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IMMDevice::Activate method
(mmdeviceapi.h)
Article10/13/2021

The Activate method creates a COM object with the specified interface.

C++

[in] iid

The interface identifier. This parameter is a reference to a GUID that identifies the
interface that the caller requests be activated. The caller will use this interface to
communicate with the COM object. Set this parameter to one of the following interface
identifiers:

IID_IAudioClient

IID_IAudioEndpointVolume

IID_IAudioMeterInformation

IID_IAudioSessionManager

IID_IAudioSessionManager2

IID_IBaseFilter

IID_IDeviceTopology

IID_IDirectSound

IID_IDirectSound8

Syntax

HRESULT Activate( 
  [in]  REFIID      iid, 
  [in]  DWORD       dwClsCtx, 
  [in]  PROPVARIANT *pActivationParams, 
  [out] void        **ppInterface
); 

Parameters



IID_IDirectSoundCapture

IID_IDirectSoundCapture8

IID_IMFTrustedOutput

IID_ISpatialAudioClient

IID_ISpatialAudioMetadataClient

For more information, see Remarks.

[in] dwClsCtx

The execution context in which the code that manages the newly created object will run.
The caller can restrict the context by setting this parameter to the bitwise OR of one or
more CLSCTX enumeration values. Alternatively, the client can avoid imposing any
context restrictions by specifying CLSCTX_ALL. For more information about CLSCTX, see
the Windows SDK documentation.

[in] pActivationParams

Set to NULL to activate an IAudioClient, IAudioEndpointVolume,
IAudioMeterInformation, IAudioSessionManager, or IDeviceTopology interface on an
audio endpoint device. When activating an IBaseFilter, IDirectSound, IDirectSound8,
IDirectSoundCapture, or IDirectSoundCapture8 interface on the device, the caller can
specify a pointer to a PROPVARIANT structure that contains stream-initialization
information. For more information, see Remarks.

[out] ppInterface

Pointer to a pointer variable into which the method writes the address of the interface
specified by parameter iid. Through this method, the caller obtains a counted reference
to the interface. The caller is responsible for releasing the interface, when it is no longer
needed, by calling the interface's Release method. If the Activate call fails, *ppInterface
is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_NOINTERFACE The object does not support the requested interface type.

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology


E_POINTER Parameter ppInterface is NULL.

E_INVALIDARG The pActivationParams parameter must be NULL for the
specified interface; or pActivationParams points to invalid
data.

E_OUTOFMEMORY Out of memory.

AUDCLNT_E_DEVICE_INVALIDATED The user has removed either the audio endpoint device
or the adapter device that the endpoint device connects
to.

This method creates a COM object with an interface that is specified by the iid
parameter. The method is similar to the Windows CoCreateInstance function, except
that the caller does not supply a CLSID as a parameter. For more information about
CoCreateInstance, see the Windows SDK documentation.

A client can call the Activate method of the IMMDevice interface for a particular audio
endpoint device to obtain a counted reference to an interface on that device. The
method can activate the following interfaces:

IAudioClient
IAudioEndpointVolume
IAudioMeterInformation
IAudioSessionManager
IAudioSessionManager2
IBaseFilter
IDeviceTopology
IDirectSound
IDirectSound8
IDirectSoundCapture
IDirectSoundCapture8
IMFTrustedOutput

To obtain the interface ID for an interface, use the __uuidof operator. For example, the
interface ID of IAudioCaptureClient is defined as follows:

syntax

Remarks

const IID IID_IAudioClient  __uuidof(IAudioCaptureClient) 

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager2
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology


For information about the __uuidof operator, see the Windows SDK documentation. For
information about IBaseFilter, IDirectSound, IDirectSound8, IDirectSoundCapture,
IDirectSoundCapture8, and IMFTrustedOutput see the Windows SDK documentation.

The pActivationParams parameter should be NULL for an Activate call to create an
IAudioClient, IAudioEndpointVolume, IAudioMeterInformation,
IAudioSessionManager, or IDeviceTopology interface for an audio endpoint device.

For an Activate call to create an IBaseFilter, IDirectSound, IDirectSound8,
IDirectSoundCapture, or IDirectSoundCapture8 interface, the caller can, as an option,
specify a non-NULL value for pActivationParams. In this case, pActivationParams points
to a PROPVARIANT structure that contains stream-initialization information. Set the vt
member of the structure to VT_BLOB. Set the blob.pBlobData member to point to a
DIRECTX_AUDIO_ACTIVATION_PARAMS structure that contains an audio session GUID
and stream-initialization flags. Set the blob.cbSize member to
sizeof(DIRECTX_AUDIO_ACTIVATION_PARAMS). For a code example, see Device Roles
for DirectShow Applications. For more information about PROPVARIANT, see the
Windows SDK documentation.

An IBaseFilter, IDirectSound, IDirectSound8, IDirectSoundCapture, or
IDirectSoundCapture8 interface instance that is created by the Activate method
encapsulates a stream on the audio endpoint device. During the Activate call, the
DirectSound system module creates the stream by calling the IAudioClient::Initialize
method. If pActivationParams is non-NULL, DirectSound supplies the audio session
GUID and stream-initialization flags from the DIRECTX_AUDIO_ACTIVATION_PARAMS
structure as input parameters to the Initialize call. If pActivationParams is NULL,
DirectSound sets the Initialize method's AudioSessionGuid and StreamFlags parameters
to their respective default values, NULL and 0. These values instruct the method to
assign the stream to the process-specific session that is identified by the session GUID
value GUID_NULL.

Activate can activate an IDirectSound or IDirectSound8 interface only on a rendering
endpoint device. It can activate an IDirectSoundCapture or IDirectSoundCapture8
interface only on a capture endpoint device. An Activate call to activate an IDirectSound
or IDirectSoundCapture8 interface on a capture device or an IDirectSoundCapture or
IDirectSoundCapture8 interface on a rendering device fails and returns error code
E_NOINTERFACE.

In Windows 7, a client can call IMMDevice::Activate and specify, IID_IMFTrustedOutput,
to create an output trust authorities (OTA) object and retrieve a pointer to the object's
IMFTrustedOutput interface. OTAs can operate inside or outside the Media Foundation's
protected media path (PMP) and send content outside the Media Foundation pipeline. If

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-for-directshow-applications
https://learn.microsoft.com/en-us/windows/desktop/api/mfidl/nn-mfidl-imftrustedoutput


the caller is outside PMP, then the OTA may not operate in the PMP, and the protection
settings are less robust. For information about using protected objects for audio and
example code, see Protected User Mode Audio (PUMA).

For general information about protected objects and IMFTrustedOutput, see "Protected
Media Path" in Media Foundation documentation.

 
For code examples that call the Activate method, see the following topics:

Rendering a Stream
Device Topologies
Using the IKsControl Interface to Access Audio Properties
Audio Events for Legacy Audio Applications
Render Spatial Sound Using Spatial Audio Objects

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IAudioClient Interface

IAudioEndpointVolume Interface

Note  When using the ISpatialAudioClient interfaces on an Xbox One Development
Kit (XDK) title, you must first call EnableSpatialAudio before calling
IMMDeviceEnumerator::EnumAudioEndpoints or
IMMDeviceEnumerator::GetDefaultAudioEndpoint. Failure to do so will result in
an E_NOINTERFACE error being returned from the call to Activate.
EnableSpatialAudio is only available for XDK titles, and does not need to be called
for Universal Windows Platform apps running on Xbox One, nor for any non-Xbox
One devices.

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/protected-user-mode-audio--puma-
https://learn.microsoft.com/en-us/windows/desktop/api/mfidl/nn-mfidl-imftrustedoutput
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-topologies
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/render-spatial-sound-using-spatial-audio-objects
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudioendpointvolume
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioMeterInformation Interface

IAudioSessionManager Interface

IDeviceTopology Interface

IMMDevice Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/endpointvolume/nn-endpointvolume-iaudiometerinformation
https://learn.microsoft.com/en-us/windows/desktop/api/audiopolicy/nn-audiopolicy-iaudiosessionmanager
https://learn.microsoft.com/en-us/windows/desktop/api/devicetopology/nn-devicetopology-idevicetopology
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


IMMDevice::GetId method
(mmdeviceapi.h)
Article10/13/2021

The GetId method retrieves an endpoint ID string that identifies the audio endpoint
device.

C++

[out] ppstrId

Pointer to a pointer variable into which the method writes the address of a null-
terminated, wide-character string containing the endpoint device ID. The method
allocates the storage for the string. The caller is responsible for freeing the storage,
when it is no longer needed, by calling the CoTaskMemFree function. If the GetId call
fails, *ppstrId is NULL. For information about CoTaskMemFree, see the Windows SDK
documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_OUTOFMEMORY Out of memory.

E_POINTER Parameter pwstrId is NULL.

Syntax

HRESULT GetId( 
  [out] LPWSTR *ppstrId 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The endpoint ID string obtained from this method identifies the audio endpoint device
that is represented by the IMMDevice interface instance. A client can use the endpoint
ID string to create an instance of the audio endpoint device at a later time or in a
different process by calling the IMMDeviceEnumerator::GetDevice method. Clients
should treat the contents of the endpoint ID string as opaque. That is, clients should not
attempt to parse the contents of the string to obtain information about the device. The
reason is that the string format is undefined and might change from one
implementation of the MMDevice API system module to the next.

For code examples that call the GetId method, see the following topics:

Device Properties
Device Roles for Legacy Windows Multimedia Applications

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDevice Interface

IMMDeviceEnumerator::GetDevice

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-for-legacy-windows-multimedia-applications
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice


IMMDevice::GetState method
(mmdeviceapi.h)
Article10/13/2021

The GetState method retrieves the current device state.

C++

[out] pdwState

Pointer to a DWORD variable into which the method writes the current state of the
device. The device-state value is one of the following DEVICE_STATE_XXX constants:

DEVICE_STATE_ACTIVE

DEVICE_STATE_DISABLED

DEVICE_STATE_NOTPRESENT

DEVICE_STATE_UNPLUGGED

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pdwState is NULL.

Syntax

HRESULT GetState( 
  [out] DWORD *pdwState 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-state-xxx-constants


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDevice Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


IMMDevice::OpenPropertyStore method
(mmdeviceapi.h)
Article10/13/2021

The OpenPropertyStore method retrieves an interface to the device's property store.

C++

[in] stgmAccess

The storage-access mode. This parameter specifies whether to open the property store
in read mode, write mode, or read/write mode. Set this parameter to one of the
following STGM constants:

STGM_READ

STGM_WRITE

STGM_READWRITE

The method permits a client running as an administrator to open a store for read-only,
write-only, or read/write access. A client that is not running as an administrator is
restricted to read-only access. For more information about STGM constants, see the
Windows SDK documentation.

[out] ppProperties

Pointer to a pointer variable into which the method writes the address of the
IPropertyStore interface of the device's property store. Through this method, the caller
obtains a counted reference to the interface. The caller is responsible for releasing the
interface, when it is no longer needed, by calling the interface's Release method. If the

Syntax

HRESULT OpenPropertyStore( 
  [in]  DWORD          stgmAccess, 
  [out] IPropertyStore **ppProperties 
); 

Parameters



OpenPropertyStore call fails, *ppProperties is NULL. For more information about
IPropertyStore, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG Parameter stgmAccess is not a valid access mode.

E_POINTER Parameter ppProperties is NULL.

E_OUTOFMEMORY Out of memory.

In general, the properties in the device's property store are read-only for clients that do
not perform administrative, system, or service functions.

For code examples that call the OpenPropertyStore method, see the following topics:

Device Properties
Device Roles for DirectSound Applications

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDevice Interface

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-for-directsound-applications
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IMMDeviceCollection interface
(mmdeviceapi.h)
Article07/22/2021

The IMMDeviceCollection interface represents a collection of multimedia device
resources. In the current implementation, the only device resources that the MMDevice
API can create collections of are audio endpoint devices.

A client can obtain a reference to an IMMDeviceCollection interface instance by calling
the IMMDeviceEnumerator::EnumAudioEndpoints method. This method creates a
collection of endpoint objects, each of which represents an audio endpoint device in the
system. Each endpoint object in the collection supports the IMMDevice and
IMMEndpoint interfaces. For more information, see IMMDeviceEnumerator Interface.

For a code example that uses the IMMDeviceCollection interface, see Device Properties.

The IMMDeviceCollection interface inherits from the IUnknown interface.
IMMDeviceCollection also has these types of members:

The IMMDeviceCollection interface has these methods.

 

IMMDeviceCollection::GetCount  

The GetCount method retrieves a count of the devices in the device collection.

IMMDeviceCollection::Item  

The Item method retrieves a pointer to the specified item in the device collection.

   

Minimum supported client Windows Vista [desktop apps only]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immendpoint
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Core Audio Interfaces

IMMDevice Interface

IMMDeviceEnumerator Interface

IMMDeviceEnumerator::EnumAudioEndpoints

IMMEndpoint Interface

MMDevice API

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immendpoint
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api


IMMDeviceCollection::GetCount method
(mmdeviceapi.h)
Article10/13/2021

The GetCount method retrieves a count of the devices in the device collection.

C++

[out] pcDevices

Pointer to a UINT variable into which the method writes the number of devices in the
device collection.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pcDevices is NULL.

For a code example that calls the GetCount method, see Device Properties.

   

Syntax

HRESULT GetCount( 
  [out] UINT *pcDevices 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDeviceCollection Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection


IMMDeviceCollection::Item method
(mmdeviceapi.h)
Article10/13/2021

The Item method retrieves a pointer to the specified item in the device collection.

C++

[in] nDevice

The device number. If the collection contains n devices, the devices are numbered 0 to
n– 1.

[out] ppDevice

Pointer to a pointer variable into which the method writes the address of the IMMDevice
interface of the specified item in the device collection. Through this method, the caller
obtains a counted reference to the interface. The caller is responsible for releasing the
interface, when it is no longer needed, by calling the interface's Release method. If the
Item call fails, *ppDevice is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppDevice is NULL.

E_INVALIDARG Parameter nDevice is not a valid device number.

Syntax

HRESULT Item( 
  [in]  UINT      nDevice, 
  [out] IMMDevice **ppDevice 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


Feedback

Was this page helpful?

Get help at Microsoft Q&A

This method retrieves a pointer to the IMMDevice interface of the specified item in the
device collection. Each item in the collection is an endpoint object that represents an
audio endpoint device. The caller selects a device from the device collection by
specifying the device number. For a collection of n devices, valid device numbers range
from 0 to n– 1. To obtain a count of the devices in a collection, call the
IMMDeviceCollection::GetCount method.

For a code example that calls the Item method, see Device Properties.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDevice Interface

IMMDeviceCollection Interface

IMMDeviceCollection::GetCount

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-getcount
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-getcount


IMMDeviceEnumerator interface
(mmdeviceapi.h)
Article07/22/2021

The IMMDeviceEnumerator interface provides methods for enumerating multimedia
device resources. In the current implementation of the MMDevice API, the only device
resources that this interface can enumerate are audio endpoint devices. A client obtains
a reference to an IMMDeviceEnumerator interface by calling the CoCreateInstance
function, as described previously (see MMDevice API).

The device resources enumerated by the methods in the IMMDeviceEnumerator
interface are represented as collections of objects with IMMDevice interfaces. A
collection has an IMMDeviceCollection interface. The
IMMDeviceEnumerator::EnumAudioEndpoints method creates a device collection.

To obtain a pointer to the IMMDevice interface of an item in a device collection, the
client calls the IMMDeviceCollection::Item method.

For code examples that use the IMMDeviceEnumerator interface, see the following
topics:

Device Properties
Rendering a Stream

The IMMDeviceEnumerator interface inherits from the IUnknown interface.
IMMDeviceEnumerator also has these types of members:

The IMMDeviceEnumerator interface has these methods.

 

IMMDeviceEnumerator::EnumAudioEndpoints  

The EnumAudioEndpoints method generates a collection of audio endpoint devices that meet the
specified criteria.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-item
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

IMMDeviceEnumerator::GetDefaultAudioEndpoint  

The GetDefaultAudioEndpoint method retrieves the default audio endpoint for the specified data-
flow direction and role.

IMMDeviceEnumerator::GetDevice  

The GetDevice method retrieves an audio endpoint device that is identified by an endpoint ID
string.

IMMDeviceEnumerator::RegisterEndpointNotificationCallback  

The RegisterEndpointNotificationCallback method registers a client's notification callback
interface.

IMMDeviceEnumerator::UnregisterEndpointNotificationCallback  

The UnregisterEndpointNotificationCallback method deletes the registration of a notification
interface that the client registered in a previous call to the
IMMDeviceEnumerator::RegisterEndpointNotificationCallback method.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Core Audio Interfaces

IMMDevice Interface

IMMDeviceCollection Interface

IMMDeviceCollection::Item

IMMDeviceEnumerator::EnumAudioEndpoints

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevicecollection-item
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints


Feedback

Was this page helpful?

Get help at Microsoft Q&A

MMDevice API

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api


IMMDeviceEnumerator::EnumAudioEnd
points method (mmdeviceapi.h)
Article10/13/2021

The EnumAudioEndpoints method generates a collection of audio endpoint devices
that meet the specified criteria.

C++

[in] dataFlow

The data-flow direction for the endpoint devices in the collection. The caller should set
this parameter to one of the following EDataFlow enumeration values:

eRender

eCapture

eAll

If the caller specifies eAll, the method includes both rendering and capture endpoints in
the collection.

[in] dwStateMask

The state or states of the endpoints that are to be included in the collection. The caller
should set this parameter to the bitwise OR of one or more of the following
DEVICE_STATE_XXX constants:

DEVICE_STATE_ACTIVE

DEVICE_STATE_DISABLED

Syntax

HRESULT EnumAudioEndpoints( 
  [in]  EDataFlow           dataFlow, 
  [in]  DWORD               dwStateMask, 
  [out] IMMDeviceCollection **ppDevices 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-state-xxx-constants


DEVICE_STATE_NOTPRESENT

DEVICE_STATE_UNPLUGGED

For example, if the caller sets the dwStateMask parameter to DEVICE_STATE_ACTIVE |
DEVICE_STATE_UNPLUGGED, the method includes endpoints that are either active or
unplugged from their jacks, but excludes endpoints that are on audio adapters that have
been disabled or are not present. To include all endpoints, regardless of state, set
dwStateMask = DEVICE_STATEMASK_ALL.

[out] ppDevices

Pointer to a pointer variable into which the method writes the address of the
IMMDeviceCollection interface of the device-collection object. Through this method, the
caller obtains a counted reference to the interface. The caller is responsible for releasing
the interface, when it is no longer needed, by calling the interface's Release method. If
the EnumAudioEndpoints call fails, *ppDevices is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppDevices is NULL.

E_INVALIDARG Parameter dataFlow or dwStateMask is out of range.

E_OUTOFMEMORY Out of memory.

For example, the following call enumerates all audio-rendering endpoint devices that
are currently active (present and not disabled):

C++

Return value

Remarks

  hr = pDevEnum->EnumAudioEndpoints( 
                   eRender, DEVICE_STATE_ACTIVE, 
                   &pEndpoints); 

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection


Feedback

Was this page helpful?

Get help at Microsoft Q&A

In the preceding code fragment, variable hr is of type HRESULT, pDevEnum is a pointer
to an IMMDeviceEnumerator interface, and pEndpoints is a pointer to an
IMMDeviceCollection interface.

For a code example that calls the EnumAudioEndpoints method, see Device Properties.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDeviceCollection Interface

IMMDeviceEnumerator Interface

Examples

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevicecollection
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator


IMMDeviceEnumerator::GetDefaultAudi
oEndpoint method (mmdeviceapi.h)
Article10/13/2021

The GetDefaultAudioEndpoint method retrieves the default audio endpoint for the
specified data-flow direction and role.

C++

[in] dataFlow

The data-flow direction for the endpoint device. The caller should set this parameter to
one of the following two EDataFlow enumeration values:

eRender

eCapture

The data-flow direction for a rendering device is eRender. The data-flow direction for a
capture device is eCapture.

[in] role

The role of the endpoint device. The caller should set this parameter to one of the
following ERole enumeration values:

eConsole

eMultimedia

eCommunications

Syntax

HRESULT GetDefaultAudioEndpoint( 
  [in]  EDataFlow dataFlow, 
  [in]  ERole     role, 
  [out] IMMDevice **ppEndpoint 
); 

Parameters



For more information, see Remarks.

[out] ppEndpoint

Pointer to a pointer variable into which the method writes the address of the IMMDevice
interface of the endpoint object for the default audio endpoint device. Through this
method, the caller obtains a counted reference to the interface. The caller is responsible
for releasing the interface, when it is no longer needed, by calling the interface's Release
method. If the GetDefaultAudioEndpoint call fails, *ppDevice is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppDevice is NULL.

E_INVALIDARG Parameter dataFlow or role is out of range.

E_NOTFOUND No device is available.

E_OUTOFMEMORY Out of memory.

Note

In Windows Vista, the MMDevice API supports device roles but the system-supplied user
interface programs do not. The user interface in Windows Vista enables the user to
select a default audio device for rendering and a default audio device for capture. When
the user changes the default rendering or capture device, the system assigns all three
device roles (eConsole, eMultimedia, and eCommunications) to that device. Thus,
GetDefaultAudioEndpoint always selects the default rendering or capture device,
regardless of which role is indicated by the role parameter. In a future version of
Windows, the user interface might enable the user to assign individual roles to different
devices. In that case, the selection of a rendering or capture device by
GetDefaultAudioEndpoint might depend on the role parameter. Thus, the behavior of
an audio application developed to run in Windows Vista might change when run in a
future version of Windows. For more information, see Device Roles in Windows Vista.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-in-windows-vista


This method retrieves the default endpoint device for the specified data-flow direction
(rendering or capture) and role. For example, a client can get the default console
playback device by making the following call:

C++

In the preceding code fragment, variable hr is of type HRESULT, pDevEnum is a pointer
to an IMMDeviceEnumerator interface, and pDeviceOut is a pointer to an IMMDevice
interface.

A Windows system might contain some combination of audio endpoint devices such as
desktop speakers, high-fidelity headphones, desktop microphones, headsets with
speaker and microphones, and high-fidelity multichannel speakers. The user can assign
appropriate roles to the devices. For example, an application that manages voice
communications streams can call GetDefaultAudioEndpoint to identify the designated
rendering and capture devices for that role.

If only a single rendering or capture device is available, the system always assigns all
three rendering or capture roles to that device. If the method fails to find a rendering or
capture device for the specified role, this means that no rendering or capture device is
available at all. If no device is available, the method sets *ppEndpoint = NULL and
returns ERROR_NOT_FOUND.

For code examples that call the GetDefaultAudioEndpoint method, see the following
topics:

Rendering a Stream
Audio Events for Legacy Audio Applications

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

  hr = pDevEnum->GetDefaultAudioEndpoint( 
                   eRender, eConsole, &pDeviceOut); 

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/rendering-a-stream
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header mmdeviceapi.h

IMMDevice Interface

IMMDeviceEnumerator Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator


IMMDeviceEnumerator::GetDevice
method (mmdeviceapi.h)
Article10/13/2021

The GetDevice method retrieves an audio endpoint device that is identified by an
endpoint ID string.

C++

[in] pwstrId

Pointer to a string containing the endpoint ID. The caller typically obtains this string
from the IMMDevice::GetId method or from one of the methods in the
IMMNotificationClient interface.

[out] ppDevice

Pointer to a pointer variable into which the method writes the address of the IMMDevice
interface for the specified device. Through this method, the caller obtains a counted
reference to the interface. The caller is responsible for releasing the interface, when it is
no longer needed, by calling the interface's Release method. If the GetDevice call fails,
*ppDevice is NULL.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pwstrId or ppDevice is NULL.

Syntax

HRESULT GetDevice( 
  [in]  LPCWSTR   pwstrId, 
  [out] IMMDevice **ppDevice 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice


E_NOTFOUND The device ID does not identify an audio device that is in
this system.

E_OUTOFMEMORY Out of memory.

If two programs are running in two different processes and both need to access the
same audio endpoint device, one program cannot simply pass the device's IMMDevice
interface to the other program. However, the programs can access the same device by
following these steps:

1. The first program calls the IMMDevice::GetId method in the first process to obtain
the endpoint ID string that identifies the device.

2. The first program passes the endpoint ID string across the process boundary to the
second program.

3. To obtain a reference to the device's IMMDevice interface in the second process,
the second program calls GetDevice with the endpoint ID string.

For more information about the GetDevice method, see the following topics:

Endpoint ID Strings
Audio Events for Legacy Audio Applications

For code examples that use the GetDevice method, see the following topics:

Device Properties
Device Events
Using the IKsControl Interface to Access Audio Properties

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-events-for-legacy-audio-applications
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/using-the-ikscontrol-interface-to-access-audio-properties


Feedback

Was this page helpful?

Get help at Microsoft Q&A

IMMDevice Interface

IMMDevice::GetId

IMMDeviceEnumerator Interface

IMMNotificationClient Interface

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMDeviceEnumerator::RegisterEndpoi
ntNotificationCallback method
(mmdeviceapi.h)
Article10/13/2021

The RegisterEndpointNotificationCallback method registers a client's notification
callback interface.

C++

[in] pClient

Pointer to the IMMNotificationClient interface that the client is registering for
notification callbacks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pNotify is NULL.

E_OUTOFMEMORY Out of memory.

This method registers an IMMNotificationClient interface to be called by the system
when the roles, state, existence, or properties of an endpoint device change. The caller

Syntax

HRESULT RegisterEndpointNotificationCallback( 
  [in] IMMNotificationClient *pClient 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


implements the IMMNotificationClient interface.

When notifications are no longer needed, the client can call the
IMMDeviceEnumerator::UnregisterEndpointNotificationCallback method to terminate
the notifications.

The client must ensure that the IMMNotificationClient object is not released after the
RegisterEndpointNotificationCallback call and before calling
UnregisterEndpointNotificationCallback. These methods do not call the client's
IMMNotificationClient::AddRef and IMMNotificationClient::Release implementations.
The client is responsible for maintaining the reference count of the
IMMNotificationClient object. The client must increment the count if the
RegisterEndpointNotificationCallback call succeeds and release the final reference only
after calling UnregisterEndpointNotificationCallback or implement some other
mechanism to ensure that the object is not deleted before
UnregisterEndpointNotificationCallback is called. Otherwise, the application leaks the
resources held by the IMMNotificationClient and any other object that is implemented
in the same container.

For more information about the AddRef and Release methods, see the discussion of the
IUnknown interface in the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDeviceEnumerator Interface

IMMDeviceEnumerator::UnregisterEndpointNotificationCallback

IMMNotificationClient Interface

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-unregisterendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-unregisterendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-unregisterendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IMMDeviceEnumerator::UnregisterEndp
ointNotificationCallback method
(mmdeviceapi.h)
Article10/13/2021

The UnregisterEndpointNotificationCallback method deletes the registration of a
notification interface that the client registered in a previous call to the
IMMDeviceEnumerator::RegisterEndpointNotificationCallback method.

C++

[in] pClient

Pointer to the client's IMMNotificationClient interface. The client passed this same
interface pointer to the device enumerator in a previous call to the
IMMDeviceEnumerator::RegisterEndpointNotificationCallback method. For more
information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter pNotify is NULL.

E_NOTFOUND The specified notification interface was not found.

Syntax

HRESULT UnregisterEndpointNotificationCallback( 
  [in] IMMNotificationClient *pClient 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The client must ensure that the IMMNotificationClient object is not released after the
RegisterEndpointNotificationCallback call and before calling
UnregisterEndpointNotificationCallback. These methods do not call the client's
IMMNotificationClient::AddRef and IMMNotificationClient::Release implementations.
The client is responsible for maintaining the reference count of the
IMMNotificationClient object. The client must increment the count if the
RegisterEndpointNotificationCallback call succeeds and release the final reference only
after calling UnregisterEndpointNotificationCallback or implement some other
mechanism to ensure that the object is not deleted before
UnregisterEndpointNotificationCallback is called. Otherwise, the application leaks the
resources held by the IMMNotificationClient and any other object that is implemented
in the same container.

For more information about the AddRef and Release methods, see the discussion of the
IUnknown interface in the Windows SDK documentation.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMDeviceEnumerator Interface

IMMDeviceEnumerator::RegisterEndpointNotificationCallback

IMMNotificationClient Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdeviceenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMEndpoint interface (mmdeviceapi.h)
Article07/22/2021

The IMMEndpoint interface represents an audio endpoint device. A client obtains a
reference to an IMMEndpoint interface instance by following these steps:

1. By using one of the techniques described in IMMDevice Interface, obtain a
reference to the IMMDevice interface of an audio endpoint device.

2. Call the IMMDevice::QueryInterface method with parameter iid set to REFIID
IID_IMMEndpoint.

The IMMEndpoint interface inherits from the IUnknown interface. IMMEndpoint also
has these types of members:

The IMMEndpoint interface has these methods.

 

IMMEndpoint::GetDataFlow  

The GetDataFlow method indicates whether the audio endpoint device is a rendering device or a
capture device.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Inheritance

Methods

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Core Audio Interfaces

IMMDevice Interface

MMDevice API

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immdevice
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api


IMMEndpoint::GetDataFlow method
(mmdeviceapi.h)
Article10/13/2021

The GetDataFlow method indicates whether the audio endpoint device is a rendering
device or a capture device.

C++

[out] pDataFlow

Pointer to a variable into which the method writes the data-flow direction of the
endpoint device. The direction is indicated by one of the following EDataFlow
enumeration constants:

eRender
eCapture

The data-flow direction for a rendering device is eRender. The data-flow direction for a
capture device is eCapture.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppDataFlow is NULL.

Syntax

HRESULT GetDataFlow( 
  [out] EDataFlow *pDataFlow 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMEndpoint Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immendpoint


IMMNotificationClient interface
(mmdeviceapi.h)
Article07/22/2021

The IMMNotificationClient interface provides notifications when an audio endpoint
device is added or removed, when the state or properties of an endpoint device change,
or when there is a change in the default role assigned to an endpoint device. Unlike the
other interfaces in this section, which are implemented by the MMDevice API system
component, an MMDevice API client implements the IMMNotificationClient interface.
To receive notifications, the client passes a pointer to its IMMNotificationClient
interface instance as a parameter to the
IMMDeviceEnumerator::RegisterEndpointNotificationCallback method.

After registering its IMMNotificationClient interface, the client receives event
notifications in the form of callbacks through the methods of the interface.

Each method in the IMMNotificationClient interface receives, as one of its input
parameters, an endpoint ID string that identifies the audio endpoint device that is the
subject of the notification. The string uniquely identifies the device with respect to all of
the other audio endpoint devices in the system. The methods in the
IMMNotificationClient interface implementation should treat this string as opaque. That
is, none of the methods should attempt to parse the contents of the string to obtain
information about the device. The reason is that the string format is undefined and
might change from one implementation of the MMDevice API system module to the
next.

A client can use the endpoint ID string that it receives as an input parameter in a call to
an IMMNotificationClient method in two ways:

The client can create an instance of the device that the endpoint ID string
identifies. The client does this by calling the IMMDeviceEnumerator::GetDevice
method and supplying the endpoint ID string as an input parameter.
The client can compare the endpoint ID string with the endpoint ID string of an
existing device instance. To obtain the second endpoint ID string, the client calls
the IMMDevice::GetId method of the device instance. If the two strings match, they
identify the same device.

In implementing the IMMNotificationClient interface, the client should observe these
rules to avoid deadlocks and undefined behavior:

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/audio-endpoint-devices
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid


The methods of the interface must be nonblocking. The client should never wait on
a synchronization object during an event callback.
To avoid dead locks, the client should never call
IMMDeviceEnumerator::RegisterEndpointNotificationCallback or
IMMDeviceEnumerator::UnregisterEndpointNotificationCallback in its
implementation of IMMNotificationClient methods.
The client should never release the final reference on an MMDevice API object
during an event callback.

For a code example that implements the IMMNotificationClient interface, see Device
Events.

The IMMNotificationClient interface inherits from the IUnknown interface.
IMMNotificationClient also has these types of members:

The IMMNotificationClient interface has these methods.

 

IMMNotificationClient::OnDefaultDeviceChanged  

The OnDefaultDeviceChanged method notifies the client that the default audio endpoint device
for a particular device role has changed.

IMMNotificationClient::OnDeviceAdded  

The OnDeviceAdded method indicates that a new audio endpoint device has been added.

IMMNotificationClient::OnDeviceRemoved  

The OnDeviceRemoved method indicates that an audio endpoint device has been removed.

IMMNotificationClient::OnDeviceStateChanged  

The OnDeviceStateChanged method indicates that the state of an audio endpoint device has
changed.

IMMNotificationClient::OnPropertyValueChanged  

The OnPropertyValueChanged method indicates that the value of a property belonging to an
audio endpoint device has changed.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-unregisterendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

Core Audio Interfaces

IMMDevice::GetId

IMMDeviceEnumerator::GetDevice

IMMDeviceEnumerator::RegisterEndpointNotificationCallback

IMMDeviceEnumerator::UnregisterEndpointNotificationCallback

MMDevice API

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/core-audio-interfaces
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdevice-getid
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdevice
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-registerendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-unregisterendpointnotificationcallback
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/mmdevice-api


IMMNotificationClient::OnDefaultDevice
Changed method (mmdeviceapi.h)
Article10/13/2021

The OnDefaultDeviceChanged method notifies the client that the default audio
endpoint device for a particular device role has changed.

C++

[in] flow

The data-flow direction of the endpoint device. This parameter is set to one of the
following EDataFlow enumeration values:

eRender

eCapture

The data-flow direction for a rendering device is eRender. The data-flow direction for a
capture device is eCapture.

[in] role

The device role of the audio endpoint device. This parameter is set to one of the
following ERole enumeration values:

eConsole

eMultimedia

eCommunications

Syntax

HRESULT OnDefaultDeviceChanged( 
  [in] EDataFlow flow, 
  [in] ERole     role, 
  [in] LPCWSTR   pwstrDefaultDeviceId 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles


[in] pwstrDefaultDeviceId

Pointer to the endpoint ID string that identifies the audio endpoint device. This
parameter points to a null-terminated, wide-character string containing the endpoint ID.
The string remains valid for the duration of the call. If the user has removed or disabled
the default device for a particular role, and no other device is available to assume that
role, then pwstrDefaultDevice is NULL.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

The three input parameters specify the data-flow direction, device role, and endpoint ID
string of the new default audio endpoint device.

In Windows Vista, the MMDevice API supports device roles but the system-supplied user
interface programs do not. The user interface in Windows Vista enables the user to
select a default audio device for rendering and a default audio device for capture. When
the user changes the default rendering or capture device, the system assigns all three
device roles (eConsole, eMultimedia, and eCommunications) to the new device. Thus,
when the user changes the default rendering or capture device, the system calls the
client's OnDefaultDeviceChanged method three times—once for each of the three
device roles.

In a future version of Windows, the user interface might enable the user to assign
individual roles to different devices. In that case, if the user changes the assignment of
only one or two device roles to a new rendering or capture device, the system will call
the client's OnDefaultDeviceChanged method only once or twice (that is, one call per
changed role). Depending on how the OnDefaultDeviceChanged method responds to
role changes, the behavior of an audio application developed to run in Windows Vista
might change when run in a future version of Windows. For more information, see
Device Roles in Windows Vista.

For a code example that implements the OnDefaultDeviceChanged method, see Device
Events.

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-roles-in-windows-vista
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMNotificationClient Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMNotificationClient::OnDeviceAdded
method (mmdeviceapi.h)
Article10/13/2021

The OnDeviceAdded method indicates that a new audio endpoint device has been
added.

C++

[in] pwstrDeviceId

Pointer to the endpoint ID string that identifies the audio endpoint device. This
parameter points to a null-terminated, wide-character string containing the endpoint ID.
The string remains valid for the duration of the call.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

For a code example that implements the OnDeviceAdded method, see Device Events.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT OnDeviceAdded( 
  [in] LPCWSTR pwstrDeviceId 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header mmdeviceapi.h

IMMNotificationClient Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMNotificationClient::OnDeviceRemov
ed method (mmdeviceapi.h)
Article10/13/2021

The OnDeviceRemoved method indicates that an audio endpoint device has been
removed.

C++

[in] pwstrDeviceId

Pointer to the endpoint ID string that identifies the audio endpoint device. This
parameter points to a null-terminated, wide-character string containing the endpoint ID.
The string remains valid for the duration of the call.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

For a code example that implements the OnDeviceRemoved method, see Device Events.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Syntax

HRESULT OnDeviceRemoved( 
  [in] LPCWSTR pwstrDeviceId 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header mmdeviceapi.h

IMMNotificationClient Interface

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMNotificationClient::OnDeviceStateC
hanged method (mmdeviceapi.h)
Article10/13/2021

The OnDeviceStateChanged method indicates that the state of an audio endpoint
device has changed.

C++

[in] pwstrDeviceId

Pointer to the endpoint ID string that identifies the audio endpoint device. This
parameter points to a null-terminated, wide-character string containing the endpoint ID.
The string remains valid for the duration of the call.

[in] dwNewState

Specifies the new state of the endpoint device. The value of this parameter is one of the
following DEVICE_STATE_XXX constants:

DEVICE_STATE_ACTIVE

DEVICE_STATE_DISABLED

DEVICE_STATE_NOTPRESENT

DEVICE_STATE_UNPLUGGED

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

Syntax

HRESULT OnDeviceStateChanged( 
  [in] LPCWSTR pwstrDeviceId, 
  [in] DWORD   dwNewState 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-state-xxx-constants


Feedback

Was this page helpful?

Get help at Microsoft Q&A

For a code example that implements the OnDeviceStateChanged method, see Device
Events.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMNotificationClient Interface

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


IMMNotificationClient::OnPropertyValue
Changed method (mmdeviceapi.h)
Article10/13/2021

The OnPropertyValueChanged method indicates that the value of a property belonging
to an audio endpoint device has changed.

C++

[in] pwstrDeviceId

Pointer to the endpoint ID string that identifies the audio endpoint device. This
parameter points to a null-terminated, wide-character string that contains the endpoint
ID. The string remains valid for the duration of the call.

[in] key

A PROPERTYKEY structure that specifies the property. The structure contains the
property-set GUID and an index identifying a property within the set. The structure is
passed by value. It remains valid for the duration of the call. For more information about
PROPERTYKEY, see the Windows SDK documentation.

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

A call to the IPropertyStore::SetValue method that successfully changes the value of a
property of an audio endpoint device generates a call to OnPropertyValueChanged. For

Syntax

HRESULT OnPropertyValueChanged( 
  [in] LPCWSTR           pwstrDeviceId, 
  [in] const PROPERTYKEY key 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/endpoint-id-strings
https://learn.microsoft.com/en-us/windows/desktop/api/wtypes/ns-wtypes-propertykey
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/bb761475(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

more information about IPropertyStore::SetValue, see the Windows SDK
documentation.

A client can use the key parameter to retrieve the new property value. For a code
example that uses a property key to retrieve a property value from the property store of
an endpoint device, see Device Properties.

For a code example that implements the OnPropertyValueChanged method, see Device
Events.

   

Minimum supported client Windows Vista [desktop apps only]

Minimum supported server Windows Server 2008 [desktop apps only]

Target Platform Windows

Header mmdeviceapi.h

IMMNotificationClient Interface

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-properties
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/device-events
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nn-mmdeviceapi-immnotificationclient


spatialaudioclient.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

spatialaudioclient.h contains the following programming interfaces:

 

IAudioFormatEnumerator  

Provides a list of supported audio formats. The most preferred format is first in the list. Get a
reference to this interface by calling
ISpatialAudioClient::GetSupportedAudioObjectFormatEnumerator.

ISpatialAudioClient  

The ISpatialAudioClient interface enables a client to create audio streams that emit audio from a
position in 3D space.

ISpatialAudioClient2  

The ISpatialAudioClient2 interface inherits from ISpatialAudioClient and adds methods to query
for support for offloading large audio buffers.

ISpatialAudioObject  

Represents an object that provides audio data to be rendered from a position in 3D space, relative
to the user.

ISpatialAudioObjectBase  

Base interface that represents an object that provides audio data to be rendered from a position
in 3D space, relative to the user.

ISpatialAudioObjectRenderStream  

Provides methods for controlling a spatial audio object render stream, including starting,
stopping, and resetting the stream.

Interfaces



Feedback

 

ISpatialAudioObjectRenderStreamBase  

Base interface that provides methods for controlling a spatial audio object render stream,
including starting, stopping, and resetting the stream.

ISpatialAudioObjectRenderStreamNotify  

Provides notifications for spatial audio clients to respond to changes in the state of an
ISpatialAudioObjectRenderStream.

 

SpatialAudioClientActivationParams  

Represents optional activation parameters for a spatial audio render stream. Pass this structure to
ActivateAudioInterfaceAsync when activating an ISpatialAudioClient interface.

SpatialAudioObjectRenderStreamActivationParams  

Represents activation parameters for a spatial audio render stream. Pass this structure to
ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

SpatialAudioObjectRenderStreamActivationParams2  

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioObjectRenderStreamActivationParams with the ability to specify stream options.

 

AudioObjectType  

Specifies the type of an ISpatialAudioObject.

SPATIAL_AUDIO_STREAM_OPTIONS  

Specifies audio stream options for calls to ActivateSpatialAudioStream.

Structures

Enumerations



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


AudioObjectType enumeration
(spatialaudioclient.h)
Article01/31/2022

Specifies the type of an ISpatialAudioObject. A spatial audio object can be dynamic,
meaning that its spatial properties can change over time, or static, which means that its
spatial properties are fixed. There are 17 audio channels to which a static spatial audio
object can be assigned, each representing a real or virtualized speaker. The static
channel values of the enumeration can be combined as a mask to assign a spatial audio
object to multiple channels. All of the enumeration values except for
AudioObjectType_None and AudioObjectType_Dynamic represent static channels.

C++

 

Syntax

typedef enum AudioObjectType { 
  AudioObjectType_None = 0, 
  AudioObjectType_Dynamic, 
  AudioObjectType_FrontLeft, 
  AudioObjectType_FrontRight, 
  AudioObjectType_FrontCenter, 
  AudioObjectType_LowFrequency, 
  AudioObjectType_SideLeft, 
  AudioObjectType_SideRight, 
  AudioObjectType_BackLeft, 
  AudioObjectType_BackRight, 
  AudioObjectType_TopFrontLeft, 
  AudioObjectType_TopFrontRight, 
  AudioObjectType_TopBackLeft, 
  AudioObjectType_TopBackRight, 
  AudioObjectType_BottomFrontLeft, 
  AudioObjectType_BottomFrontRight, 
  AudioObjectType_BottomBackLeft,
  AudioObjectType_BottomBackRight, 
  AudioObjectType_BackCenter 
} ; 

Constants

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


 

AudioObjectType_None  
Value: 0 
The spatial audio object is not spatialized.

AudioObjectType_Dynamic  
The spatial audio object is dynamic. It's spatial properties can be changed over time.

AudioObjectType_FrontLeft  
The spatial audio object is assigned the front left channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_FRONT_LEFT.

AudioObjectType_FrontRight  
The spatial audio object is assigned the front right channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_FRONT_RIGHT.

AudioObjectType_FrontCenter  
The spatial audio object is assigned the front center channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_FRONT_CENTER.

AudioObjectType_LowFrequency  
The spatial audio object is assigned the low frequency channel. Because this channel is not
spatialized, it does not count toward the system resource limits for spatialized audio objects. The
equivalent channel mask of DirectShow's WAVEFORMATEXTENSIBLE enumeration is
SPEAKER_LOW_FREQUENCY.

AudioObjectType_SideLeft  
The spatial audio object is assigned the side left channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_SIDE_LEFT.

AudioObjectType_SideRight  
The spatial audio object is assigned the side right channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_SIDE_RIGHT.

AudioObjectType_BackLeft  
The spatial audio object is assigned the back left channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_BACK_LEFT.

AudioObjectType_BackRight  
The spatial audio object is assigned the back right channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_BACK_RIGHT.

AudioObjectType_TopFrontLeft  
The spatial audio object is assigned the top front left channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_TOP_FRONT_LEFT.

AudioObjectType_TopFrontRight  
The spatial audio object is assigned the top front right channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_TOP_FRONT_RIGHT.

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

AudioObjectType_TopBackLeft  
The spatial audio object is assigned the top back left channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_TOP_BACK_LEFT.

AudioObjectType_TopBackRight  
The spatial audio object is assigned the top back right channel. The equivalent channel mask of
DirectShow's WAVEFORMATEXTENSIBLE enumeration is SPEAKER_TOP_BACK_RIGHT.

AudioObjectType_BottomFrontLeft  
The spatial audio object is assigned the bottom front left channel.

AudioObjectType_BottomFrontRight  
The spatial audio object is assigned the bottom front right channel.

AudioObjectType_BottomBackLeft  
The spatial audio object is assigned the bottom back left channel.

AudioObjectType_BottomBackRight  
The spatial audio object is assigned the bottom back right channel.

AudioObjectType_BackCenter  
The spatial audio object is assigned the back center channel.

   

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)


Feedback

IAudioFormatEnumerator interface
(spatialaudioclient.h)
Article07/22/2021

Provides a list of supported audio formats. The most preferred format is first in the list.
Get a reference to this interface by calling
ISpatialAudioClient::GetSupportedAudioObjectFormatEnumerator.

The IAudioFormatEnumerator interface inherits from the IUnknown interface.
IAudioFormatEnumerator also has these types of members:

The IAudioFormatEnumerator interface has these methods.

 

IAudioFormatEnumerator::GetCount  

Gets the number of supported audio formats in the list.

IAudioFormatEnumerator::GetFormat  

Gets the format with the specified index in the list. The formats are listed in order of importance.
The most preferable format is first in the list.

   

Target Platform Windows

Header spatialaudioclient.h

Inheritance

Methods

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-getsupportedaudioobjectformatenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

IAudioFormatEnumerator::GetCount
method (spatialaudioclient.h)
Article10/13/2021

Gets the number of supported audio formats in the list

C++

[out] count

The number of supported audio formats in the list.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudioclient.h

IAudioFormatEnumerator

Syntax

HRESULT GetCount( 
  [out] UINT32 *count 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-iaudioformatenumerator


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


IAudioFormatEnumerator::GetFormat
method (spatialaudioclient.h)
Article10/13/2021

Gets the format with the specified index in the list. The formats are listed in order of
importance. The most preferable format is first in the list.

C++

[in] index

The index of the item in the list to retrieve.

[out] format

Pointer to a pointer to a WAVEFORMATEX structure describing a supported audio
format.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudioclient.h

Syntax

HRESULT GetFormat( 
  [in]  UINT32       index, 
  [out] WAVEFORMATEX **format 
); 

Parameters

Return value

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

IAudioFormatEnumerator

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-iaudioformatenumerator


ISpatialAudioClient interface
(spatialaudioclient.h)
Article02/26/2022

The ISpatialAudioClient interface enables a client to create audio streams that emit
audio from a position in 3D space. This interface is a part of Windows Sonic, Microsoft’s
audio platform for more immersive audio which includes integrated spatial sound on
Xbox and Windows.

The ISpatialAudioClient interface inherits from the IUnknown interface.
ISpatialAudioClient also has these types of members:

The ISpatialAudioClient interface has these methods.

 

ISpatialAudioClient::ActivateSpatialAudioStream  

Activates and initializes spatial audio stream using one of the spatial audio stream activation
structures.

ISpatialAudioClient::GetMaxDynamicObjectCount  

Gets the maximum number of dynamic audio objects for the spatial audio client.

ISpatialAudioClient::GetMaxFrameCount  

Gets the maximum possible frame count per processing pass. This method can be used to
determine the size of the source buffer that should be allocated to convey audio data for each
processing pass.

ISpatialAudioClient::GetNativeStaticObjectTypeMask  

Gets a channel mask which represents the subset of static speaker bed channels native to current
rendering engine.

ISpatialAudioClient::GetStaticObjectPosition  

Gets the position in 3D space of the specified static spatial audio channel.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


 

ISpatialAudioClient::GetSupportedAudioObjectFormatEnumerator  

Gets an IAudioFormatEnumerator that contains all supported audio formats for spatial audio
objects, the first item in the list represents the most preferable format.

ISpatialAudioClient::IsAudioObjectFormatSupported  

Gets a value indicating whether ISpatialAudioObjectRenderStream supports a the specified
format.

ISpatialAudioClient::IsSpatialAudioStreamAvailable  

When successful, gets a value indicating whether the currently active spatial rendering engine
supports the specified spatial audio render stream.

The following example code illustrates how to initialize this interface using IMMDevice.

C++

For UWP apps that do not have access to IMMDevice, you should get an instance of
ISpatialAudioClient by calling ActivateAudioInterfaceAsync. For an example, see the
WindowsAudioSession sample .

Remarks

HRESULT hr; 
Microsoft::WRL::ComPtr<IMMDeviceEnumerator> deviceEnum; 
Microsoft::WRL::ComPtr<IMMDevice> defaultDevice; 

hr = CoCreateInstance(__uuidof(MMDeviceEnumerator), nullptr, CLSCTX_ALL, 
__uuidof(IMMDeviceEnumerator), (void**)&deviceEnum); 
hr = deviceEnum->GetDefaultAudioEndpoint(EDataFlow::eRender, eMultimedia, 
&defaultDevice); 

Microsoft::WRL::ComPtr<ISpatialAudioClient> spatialAudioClient; 
hr = defaultDevice->Activate(__uuidof(ISpatialAudioClient), 
CLSCTX_INPROC_SERVER, nullptr, (void**)&spatialAudioClient); 

Note  When using the ISpatialAudioClient interfaces on an Xbox One Development
Kit (XDK) title, you must first call EnableSpatialAudio before calling
IMMDeviceEnumerator::EnumAudioEndpoints or
IMMDeviceEnumerator::GetDefaultAudioEndpoint. Failure to do so will result in
an E_NOINTERFACE error being returned from the call to Activate.

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://github.com/microsoft/Windows-universal-samples/tree/b1cb20f191d3fd99ce89df50c5b7d1a6e2382c01/Samples/WindowsAudioSession
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-enumaudioendpoints
https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-immdeviceenumerator-getdefaultaudioendpoint


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 
To access the ActivateAudioIntefaceAsync, you will need to link to mmdevapi.lib.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

EnableSpatialAudio is only available for XDK titles, and does not need to be called
for Universal Windows Platform apps running on Xbox One, nor for any non-Xbox
One devices.

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioClient::ActivateSpatialAudi
oStream method (spatialaudioclient.h)
Article10/13/2021

Activates and initializes spatial audio stream using one of the spatial audio stream
activation structures.

C++

[in] activationParams

The structure defining the activation parameters for the spatial audio stream. The vt
field should be set to VT_BLOB and the blob field should be populated with a
SpatialAudioObjectRenderStreamActivationParams or a
SpatialAudioObjectRenderStreamForMetadataActivationParams.

[in] riid

The UUID of the spatial audio stream interface to activate.

[out] stream

A pointer to the pointer which receives the activated spatial audio interface.

If the method succeeds, it returns S_OK.

Syntax

HRESULT ActivateSpatialAudioStream( 
  [in]  const PROPVARIANT *activationParams, 
  [in]  REFIID            riid, 
  [out] void              **stream 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioobjectrenderstreamactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams


This method supports activation of the following spatial audio stream interfaces:

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamForMetadata

C++

   

Target Platform Windows

Header spatialaudioclient.h

Examples

Microsoft::WRL::ComPtr<ISpatialAudioClient> spatialAudioClient; 

// Activate ISpatialAudioClient on the desired audio-device  
hr = defaultDevice->Activate(__uuidof(ISpatialAudioClient), 
CLSCTX_INPROC_SERVER, nullptr, (void**)&spatialAudioClient); 

hr = spatialAudioClient->IsAudioObjectFormatSupported(&format); 

// Create the event that will be used to signal the client for more data 
HANDLE bufferCompletionEvent = CreateEvent(nullptr, FALSE, FALSE, nullptr); 

SpatialAudioObjectRenderStreamActivationParams streamParams; 
streamParams.ObjectFormat = &format; 
streamParams.StaticObjectTypeMask = ChannelMask_Stereo; 
streamParams.MinDynamicObjectCount = 0; 
streamParams.MaxDynamicObjectCount = 0; 
streamParams.Category = AudioCategory_SoundEffects; 
streamParams.EventHandle = bufferCompletionEvent; 
streamParams.NotifyObject = nullptr; 

PROPVARIANT activationParams; 
PropVariantInit(&activationParams); 
activationParams.vt = VT_BLOB; 
activationParams.blob.cbSize = sizeof(streamParams); 
activationParams.blob.pBlobData = reinterpret_cast<BYTE *>(&streamParams); 

Microsoft::WRL::ComPtr<ISpatialAudioObjectRenderStream> spatialAudioStream; 
hr = spatialAudioClient->ActivateSpatialAudioStream(&activationParams, 
__uuidof(spatialAudioStream), (void**)&spatialAudioStream); 

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectrenderstreamformetadata


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioClient

SpatialAudioObjectRenderStreamActivationParams

SpatialAudioObjectRenderStreamForMetadataActivationParams

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioobjectrenderstreamactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams


ISpatialAudioClient::GetMaxDynamicObj
ectCount method (spatialaudioclient.h)
Article10/13/2021

Gets the maximum number of dynamic audio objects for the spatial audio client.

C++

[out] value

Gets the maximum dynamic object count for this client.

If the method succeeds, it returns S_OK.

A dynamic ISpatialAudioObject is one that was activated by setting the type parameter
to the ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method to
AudioObjectType_Dynamic. The client has a limit of the maximum number of dynamic
spatial audio objects that can be activated at one time. When the capacity of the audio
rendering pipeline changes, the system will dynamically adjust the maximum number of
concurrent dynamic spatial audio objects. Before doing so, the system will call
OnAvailableDynamicObjectCountChange to notify clients of the resource limit change.

Call Release on an ISpatialAudioObject when it is no longer being used to free up the
resource to create new dynamic spatial audio objects.

When Windows Sonic is not available (for instance, when playing to embedded laptop
stereo speakers, or if the user has not explicitly enabled Windows Sonic on the device),

Syntax

HRESULT GetMaxDynamicObjectCount(
  [out] UINT32 *value 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreamnotify-onavailabledynamicobjectcountchange
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Feedback

Was this page helpful?

Get help at Microsoft Q&A

the number of available dynamic objects returned by GetMaxDynamicObjectCount to
an application will be 0.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioClient

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient::GetMaxFrameCount
method (spatialaudioclient.h)
Article10/13/2021

Gets the maximum possible frame count per processing pass. This method can be used
to determine the size of the source buffer that should be allocated to convey audio data
for each processing pass.

C++

[in] objectFormat

The audio format used to calculate the maximum frame count. This should be the same
format specified in the ObjectFormat field of the
SpatialAudioObjectRenderStreamActivationParams passed to
ActivateSpatialAudioStream.

[out] frameCountPerBuffer

The maximum number of audio frames that will be processed in one pass.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Syntax

HRESULT GetMaxFrameCount( 
  [in]  const WAVEFORMATEX *objectFormat, 
  [out] UINT32             *frameCountPerBuffer 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioobjectrenderstreamactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header spatialaudioclient.h

ISpatialAudioClient

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient::GetNativeStaticObje
ctTypeMask method
(spatialaudioclient.h)
Article10/13/2021

Gets a channel mask which represents the subset of static speaker bed channels native
to current rendering engine.

C++

[out] mask

A bitwise combination of values from the AudioObjectType enumeration indicating a
subset of static speaker channels. The values returned will only include the static channel
values and will not include AudioObjectType_Dynamic.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudioclient.h

Syntax

HRESULT GetNativeStaticObjectTypeMask( 
  [out] AudioObjectType *mask 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioClient

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient::GetStaticObjectPosi
tion method (spatialaudioclient.h)
Article10/13/2021

Gets the position in 3D space of the specified static spatial audio channel.

C++

[in] type

A value indicating the static spatial audio channel for which the position is being
queried. This method will return E_INVALIDARG if the value does not represent a static
channel, including AudioObjectType_Dynamic and AudioObjectType_None.

[out] x

The x coordinate of the static audio channel, in meters, relative to the listener. Positive
values are to the right of the listener and negative values are to the left.

[out] y

The y coordinate of the static audio channel, in meters, relative to the listener. Positive
values are above the listener and negative values are below.

[out] z

The z coordinate of the static audio channel, in meters, relative to the listener. Positive
values are behind the listener and negative values are in front.

Syntax

HRESULT GetStaticObjectPosition( 
  [in]  AudioObjectType type, 
  [out] float           *x, 
  [out] float           *y, 
  [out] float           *z 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The supplied AudioObjectType value does not represent
a static channel.

Position values use a right-handed Cartesian coordinate system, where each unit
represents 1 meter. The coordinate system is relative to the listener where the origin
(x=0.0, y=0.0, z=0.0) represents the center point between the listener's ears.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioClient

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient::GetSupportedAudio
ObjectFormatEnumerator method
(spatialaudioclient.h)
Article10/13/2021

Gets an IAudioFormatEnumerator that contains all supported audio formats for spatial
audio objects, the first item in the list represents the most preferable format.

C++

[out] enumerator

Pointer to the pointer that receives the IAudioFormatEnumerator interface.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioClient

Syntax

HRESULT GetSupportedAudioObjectFormatEnumerator( 
  [out] IAudioFormatEnumerator **enumerator 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-iaudioformatenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-iaudioformatenumerator
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioClient::IsAudioObjectForm
atSupported method
(spatialaudioclient.h)
Article10/13/2021

Gets a value indicating whether ISpatialAudioObjectRenderStream supports a the
specified format.

C++

[in] objectFormat

The format for which support is queried.

If the specified format is supported, it returns S_OK. If specified format is unsupported,
this method returns AUDCLNT_E_UNSUPPORTED_FORMAT.

   

Target Platform Windows

Header spatialaudioclient.h

Syntax

HRESULT IsAudioObjectFormatSupported( 
  [in] const WAVEFORMATEX *objectFormat 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioClient

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient::IsSpatialAudioStrea
mAvailable method
(spatialaudioclient.h)
Article10/13/2021

When successful, gets a value indicating whether the currently active spatial rendering
engine supports the specified spatial audio render stream.

C++

[in] streamUuid

The interface ID of the interface for which availability is queried.

[in, optional] auxiliaryInfo

A structure containing additional information to be used when support is queried. For
more information, see Remarks.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_STREAM_IS_NOT_AVAILABLE The specified stream interface
can't be activated by the currently
active rendering engine.

SPTLAUDCLNT_E_METADATA_FORMAT_IS_NOT_SUPPORTED The metadata format supplied in

Syntax

HRESULT IsSpatialAudioStreamAvailable( 
  [in]           REFIID            streamUuid, 
  [in, optional] const PROPVARIANT *auxiliaryInfo 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

the auxiliaryInfo parameter is not
supported by the current
rendering engine. For more
information, see Remarks..

When querying to see if the ISpatialAudioObjectRenderStreamForMetadata you can use
the auxilaryInfo parameter to query if a particular metadata format is supported. The
following code example demonstrates how to initialize the PROPVARIANT structure to
check for support for an example metadata format.

C++

If the specified metadata format is unsupported, IsSpatialAudioStreamAvailable returns
SPTLAUDCLNT_E_METADATA_FORMAT_IS_NOT_SUPPORTED.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioClient

Remarks

PROPVARIANT auxiliaryInfo;   
auxiliaryInfo.vt = VT_CLSID;   
auxiliaryInfo.puuid = const_cast<CLSID*>(&CONTOSO_SPATIAL_METADATA_V1_0);   

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectrenderstreamformetadata
https://learn.microsoft.com/en-us/windows/desktop/api/propidl/ns-propidl-propvariant
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


ISpatialAudioClient2 interface
(spatialaudioclient.h)
Article02/16/2023

The ISpatialAudioClient2 interface inherits from ISpatialAudioClient and adds methods
to query for support for offloading large audio buffers.

The ISpatialAudioClient2 interface inherits from the ISpatialAudioClient interface.

The ISpatialAudioClient2 interface has these methods.

 

ISpatialAudioClient2::GetMaxFrameCountForCategory  

Gets the maximum supported frame count per processing pass.

ISpatialAudioClient2::IsOffloadCapable  

Queries whether the audio rendering endpoint that the ISpatialAudioClient2 was created on
supports hardware offloaded audio processing.

Audio offloading allows an app to submit a large audio buffer (typically 1 to 2 seconds)
the the audio device driver. Without offload, a typical audio buffer only contains 10ms
of data, requiring the app to be awakened around 100 times per second to provide
additional audio data. Using offloaded large buffers can provide battery savings,
particularly for the scenario where the user is listening to audio with the screen off.

To use this feature, the driver for the audio device must support offloading. Query for
support by calling IsOffloadCapable. Determine the maximum number of audio frames
supported for offloading by calling GetMaxFrameCountForCategory.

ISpatialAudioClient2 was introduced in Windows 11 (Windows Build 22000), so your
code should handle the case where it is running on an older version of Windows that

Inheritance

Methods

Remarks



doesn't include the interface. The following example illustrates using calling
QueryInterface on ISpatialAudioClient to try to obtain an instance of
ISpatialAudioClient2 and checking that the retrieved interface is not null before calling
its methods.

C++

For UWP apps that do not have access to IMMDevice, you should get an instance of
ISpatialAudioClient by calling ActivateAudioInterfaceAsync. For an example, see the
WindowsAudioSession sample .

   

Minimum supported client Windows Build 22000

Header spatialaudioclient.h

HRESULT hr; 
Microsoft::WRL::ComPtr<IMMDeviceEnumerator> deviceEnum; 
Microsoft::WRL::ComPtr<IMMDevice> defaultDevice; 

hr = CoCreateInstance(__uuidof(MMDeviceEnumerator), nullptr, CLSCTX_ALL, 
__uuidof(IMMDeviceEnumerator), (void**)&deviceEnum); 
hr = deviceEnum->GetDefaultAudioEndpoint(EDataFlow::eRender, eMultimedia, 
&defaultDevice); 

Microsoft::WRL::ComPtr<ISpatialAudioClient> spatialAudioClient; 
hr = defaultDevice->Activate(__uuidof(ISpatialAudioClient), 
CLSCTX_INPROC_SERVER, nullptr, (void**)&spatialAudioClient); 

Microsoft::WRL::ComPtr<ISpatialAudioClient2> spatialAudioClient2; 
hr = spatialAudioClient->QueryInterface(__uuidof(ISpatialAudioClient2), 
(void**)&spatialAudioClient2); 

if (spatialAudioClient2 != nullptr) 
{ 
    BOOL offloadCapable = false; 

    // AudioCategory_Media is just for example purposes. 
    // Specify the same audio category that you intend specify in the call 
toISpatialAudioClient::ActivateSpatialAudioStream 
    hr = spatialAudioClient2->IsOffloadCapable(AudioCategory_Media, 
&offloadCapable); 
} 

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://github.com/microsoft/Windows-universal-samples/tree/b1cb20f191d3fd99ce89df50c5b7d1a6e2382c01/Samples/WindowsAudioSession


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioClient2::GetMaxFrameCou
ntForCategory method
(spatialaudioclient.h)
Article02/26/2022

Gets the maximum supported frame count per processing pass.

C++

[in] category

The AUDIO_STREAM_CATEGORY (audiosessiontypes.h) of the audio stream for which
support is queried.

[in] offloadEnabled

A boolean value specifying whether the returned frame count should be calculated with
audio offload support considered. If this flag is set to true, the returned frame count is
what it would be if the stream is activated for offload mode. However, if this flag is set
to true but the audio endpoint does not support offload mode, then the flag has no
effect. Use ISpatialAudioClient2::IsOffloadCapable to check if offload mode is supported.

[in] objectFormat

A pointer to a WAVEFORMATEX (mmeapi.h) structure specifying the format of the audio
stream for which support is queried.

[out] frameCountPerBuffer

Syntax

HRESULT GetMaxFrameCountForCategory( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [in]  BOOL                  offloadEnabled, 
  [in]  const WAVEFORMATEX    *objectFormat, 
  [out] UINT32                *frameCountPerBuffer 
); 

Parameters

https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/ns-mmeapi-waveformatex


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Receives a pointer to an INT32 indicating the maximum supported frame count for the
audio device and the specified input parameters.

An HRESULT including the following values.

Value Description

S_OK Success

AUDCLNT_E_DEVICE_INVALIDATED The audio device associated with the audio client has been
invalidated.

The value returned by this method can be used to allocate source buffer. This value will
change if the endpoint cadence changes. The caller must specify same
AUDIO_STREAM_CATEGORY and WAVEFORMATEX values that will be used when
creating the stream. The offloadEnabled parameter must be set to TRUE if the stream will
be created with the SPATIAL_AUDIO_STREAM_OPTIONS_OFFLOAD flag.

   

Minimum supported client Windows Build 22000

Header spatialaudioclient.h

Return value

Remarks

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/win32/api/mmeapi/ns-mmeapi-waveformatex


ISpatialAudioClient2::IsOffloadCapable
method (spatialaudioclient.h)
Article02/26/2022

Queries whether the audio rendering endpoint that the ISpatialAudioClient2 was created
on supports hardware offloaded audio processing. The method also considers the
capabilities of the AUDIO_STREAM_CATEGORY value that will be used, as use of offload
is restricted to only certain AUDIO_STREAM_CATEGORY values.

C++

[in] category

A value from the AUDIO_STREAM_CATEGORY enumeration specifying the category of
audio for which offload support is queried.

[out] isOffloadCapable

Receives a boolean value indicating if offloaded audio processing is supported by the
audio rendering endpoint.

An HRESULT including the following values.

Value Description

S_OK Success

AUDCLNT_E_DEVICE_INVALIDATED The audio device associated with the audio client has been
invalidated.

Syntax

HRESULT IsOffloadCapable( 
  [in]  AUDIO_STREAM_CATEGORY category, 
  [out] BOOL                  *isOffloadCapable 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Value Description

E_INVALIDARG The value supplied in the category parameter is not valid.

   

Minimum supported client Windows Build 22000

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObject interface
(spatialaudioclient.h)
Article07/22/2021

Represents an object that provides audio data to be rendered from a position in 3D
space, relative to the user. Spatial audio objects can be static or dynamic, which you
specify with the type parameter to the
ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method. Dynamic audio
objects can be placed in an arbitrary position in space and can be moved over time.
Static audio objects are assigned to one or more channels, defined in the
AudioObjectType enumeration, that each correlate to a fixed speaker location that may
be a physical or a virtualized speaker.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObject interface inherits from ISpatialAudioObjectBase.
ISpatialAudioObject also has these types of members:

The ISpatialAudioObject interface has these methods.

 

ISpatialAudioObject::SetPosition  

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObject audio
data will be rendered.

ISpatialAudioObject::SetVolume  

Sets an audio amplitude multiplier that will be applied to the audio data provided by the
ISpatialAudioObject before it is submitted to the audio rendering engine.

Inheritance

Methods

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectBase

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectBase interface.

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObject::SetPosition method
(spatialaudioclient.h)
Article10/13/2021

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObject audio data
will be rendered.

C++

[in] x

The x position of the audio object, in meters, relative to the listener. Positive values are to the right
of the listener and negative values are to the left.

[in] y

The y position of the audio object, in meters, relative to the listener. Positive values are above the
listener and negative values are below.

[in] z

The z position of the audio object, in meters, relative to the listener. Positive values are behind the
listener and negative values are in front.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited
to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetPosition.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly

Syntax

HRESULT SetPosition( 
  [in] float x, 
  [in] float y, 
  [in] float z 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

SPTLAUDCLNT_E_PROPERTY_NOT_SUPPORTED The ISpatialAudioObject is not of type AudioObjectType_Dynamic.
Set the type of the audio object with the type parameter to the
ISpatialAudioObjectRenderStreamBase::ActivateSpatialAudioObject
method.

This method can only be called on a ISpatialAudioObject that is of type AudioObjectType_Dynamic.
Set the type of the audio object with the type parameter to the
ISpatialAudioObjectRenderStreamBase::ActivateSpatialAudioObject method.

Position values use a right-handed Cartesian coordinate system, where each unit represents 1
meter. The coordinate system is relative to the listener where the origin (x=0.0, y=0.0, z=0.0)
represents the center point between the listener's ears.

If SetPosition is never called, the origin (x=0.0, y=0.0, z=0.0) is used as the default position. After
SetPosition is called, the position that is set will be used for the audio object until the position is
changed with another call to SetPosition.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObject

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


ISpatialAudioObject::SetVolume method
(spatialaudioclient.h)
Article10/13/2021

Sets an audio amplitude multiplier that will be applied to the audio data provided by the
ISpatialAudioObject before it is submitted to the audio rendering engine.

C++

[in] volume

The amplitude multiplier for audio data. This must be a value between 0.0 and 1.0.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetVolume.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

If SetVolume is never called, the default value of 1.0 is used. After SetVolume is called, the
volume that is set will be used for the audio object until the volume is changed with another call
to SetVolume.

Syntax

HRESULT SetVolume( 
  [in] float volume 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObject

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


ISpatialAudioObjectBase interface
(spatialaudioclient.h)
Article08/03/2021

Base interface that represents an object that provides audio data to be rendered from a
position in 3D space, relative to the user. Spatial audio objects can be static or dynamic,
which you specify with the type parameter to the
ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method. Dynamic audio
objects can be placed in an arbitrary position in space and can be moved over time.
Static audio objects are assigned to one or more channels, defined in the
AudioObjectType enumeration, that each correlate to a fixed speaker location that may
be a physical or a virtualized speaker.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectBase interface inherits from the IUnknown interface.
ISpatialAudioObjectBase also has these types of members:

The ISpatialAudioObjectBase interface has these methods.

 

ISpatialAudioObjectBase::GetAudioObjectType  

Gets a value specifying the type of audio object that is represented by the ISpatialAudioObject.

ISpatialAudioObjectBase::GetBuffer  

Gets a buffer that is used to supply the audio data for the ISpatialAudioObject.

ISpatialAudioObjectBase::IsActive  

Gets a boolean value indicating whether the ISpatialAudioObject is valid.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioObjectBase::SetEndOfStream  

Instructs the system that the final block of audio data has been submitted for the
ISpatialAudioObject so that the object can be deactivated and its resources reused.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectBase::GetAudioObje
ctType method (spatialaudioclient.h)
Article10/13/2021

Gets a value specifying the type of audio object that is represented by the
ISpatialAudioObject. This value indicates if the object is dynamic or static. If the object is
static, one and only one of the static audio channel values to which the object is
assigned is returned.

C++

[out] audioObjectType

A value specifying the type of audio object that is represented

If the method succeeds, it returns S_OK.

Set the type of the audio object with the type parameter to the
ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method.

   

Target Platform Windows

Syntax

HRESULT GetAudioObjectType( 
  [out] AudioObjectType *audioObjectType 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header spatialaudioclient.h

ISpatialAudioObject

ISpatialAudioObjectBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


ISpatialAudioObjectBase::GetBuffer
method (spatialaudioclient.h)
Article10/13/2021

Gets a buffer that is used to supply the audio data for the ISpatialAudioObject.

C++

[out] buffer

The buffer into which audio data is written.

[out] bufferLength

The length of the buffer in bytes. This length will be the value returned in the
frameCountPerBuffer parameter to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects multiplied by the value of the
nBlockAlign field of the WAVEFORMATEX structure passed in the
SpatialAudioObjectRenderStreamActivationParams 
parameter to ISpatialAudioClient::ActivateSpatialAudioStream.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects
was not called before the call to GetBuffer. This method must
be called before the first time GetBuffer is called and after
every subsequent call to
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects.

Syntax

HRESULT GetBuffer( 
  [out] BYTE   **buffer, 
  [out] UINT32 *bufferLength 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioobjectrenderstreamactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects


Feedback

Was this page helpful?

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called
implicitly by the system if GetBuffer is not called within an
audio processing pass (between calls to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects).

The first time GetBuffer is called after the ISpatialAudioObject is activated with a call
ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject, 
lifetime of the spatial audio object starts. 
To keep the spatial audio object alive after that, this GetBuffer must be called on every
processing pass (between calls to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects and
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects). If GetBuffer is not called
within an audio processing pass, SetEndOfStream is called implicitly on the audio object to
deactivate, and the audio object can only be reused after calling Release on the object and
then reactivating the object by calling ActivateSpatialAudioObject again.

The pointers retrieved by GetBuffer should not be used after 
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects has been called.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObject

ISpatialAudioObjectBase

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectBase::IsActive
method (spatialaudioclient.h)
Article10/13/2021

Gets a boolean value indicating whether the ISpatialAudioObject is valid.

C++

[out] isActive

TRUE if the audio object is currently valid; otherwise, FALSE.

If the method succeeds, it returns S_OK.

If this value is false, you should call Release to make the audio object resource available
in the future.

IsActive will be set to false after SetEndOfStream is called implicitly or explicitly.
SetEndOfStream is called implicitly by the system if GetBuffer is not called within an
audio processing pass (between calls to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects and
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects).

The rendering engine will also deactivate the audio object, setting IsActive to false,
when audio object resources become unavailable. In this case, a notification is sent via
ISpatialAudioObjectRenderStreamNotify before the object is deactivated. The value
returned in the availableDynamicObjectCount parameter to

Syntax

HRESULT IsActive( 
  [out] BOOL *isActive 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstreamnotify


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects indicates how many
objects will be processed for each pass.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObject

ISpatialAudioObjectBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


ISpatialAudioObjectBase::SetEndOfStream
method (spatialaudioclient.h)
Article10/13/2021

Instructs the system that the final block of audio data has been submitted for the
ISpatialAudioObject so that the object can be deactivated and its resources reused.

C++

[in] frameCount

The number of audio frames in the audio buffer that should be included in the final
processing pass. This number may be smaller than or equal to the value returned in the
frameCountPerBuffer parameter to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects
was not called before the call to SetEndOfStream.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called
implicitly by the system if GetBuffer is not called within an
audio processing pass (between calls to
ISpatialAudioObjectRenderStream::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStream::EndUpdatingAudioObjects).

Syntax

HRESULT SetEndOfStream( 
  [in] UINT32 frameCount 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Call Release after calling SetEndOfStream to make free the audio object resources for future
use.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObject

ISpatialAudioObjectBase

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


ISpatialAudioObjectRenderStream
interface (spatialaudioclient.h)
Article07/22/2021

Provides methods for controlling a spatial audio object render stream, including
starting, stopping, and resetting the stream. Also provides methods for activating new
ISpatialAudioObject instances and notifying the system when you are beginning and
ending the process of updating activated spatial audio objects and data.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectRenderStream interface inherits from
ISpatialAudioObjectRenderStreamBase. ISpatialAudioObjectRenderStream also has
these types of members:

The ISpatialAudioObjectRenderStream interface has these methods.

 

ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject  

Activates an ISpatialAudioObject for audio rendering.

 

   

Inheritance

Methods

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectRenderStreamBase interface.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStreamBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStream::Activ
ateSpatialAudioObject method
(spatialaudioclient.h)
Article10/13/2021

Activates an ISpatialAudioObject for audio rendering.

C++

[in] type

The type of audio object to activate. For dynamic audio objects, this value must be
AudioObjectType_Dynamic. For static audio objects, specify one of the static audio
channel values from the enumeration. Specifying AudioObjectType_None will produce
an audio object that is not spatialized.

[out] audioObject

Receives a pointer to the activated interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_NO_MORE_OBJECTS The system has reached the maximum number of
simultaneous audio objects.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial

Syntax

HRESULT ActivateSpatialAudioObject( 
  [in]  AudioObjectType     type,
  [out] ISpatialAudioObject **audioObject 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject


Feedback

Was this page helpful?

audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses
an unsupported format.

A dynamic ISpatialAudioObject is one that was activated by setting the type parameter
to the ActivateSpatialAudioObject method to AudioObjectType_Dynamic. The client
has a limit of the maximum number of dynamic spatial audio objects that can be
activated at one time. After the limit has been reached, attempting to activate additional
audio objects will result in this method returning an
SPTLAUDCLNT_E_NO_MORE_OBJECTS error. To avoid this, call Release on each dynamic
ISpatialAudioObject after it is no longer being used to free up the resource so that it
can be reallocated. See ISpatialAudioObject::IsActive and
ISpatialAudioObject::SetEndOfStream for more information on the managing the
lifetime of spatial audio objects.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-isactive
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamBase
interface (spatialaudioclient.h)
Article07/22/2021

Base interface that provides methods for controlling a spatial audio object render
stream, including starting, stopping, and resetting the stream. Also provides methods
for activating new ISpatialAudioObject instances and notifying the system when you are
beginning and ending the process of updating activated spatial audio objects and data.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectRenderStreamBase interface inherits from the IUnknown
interface. ISpatialAudioObjectRenderStreamBase also has these types of members:

The ISpatialAudioObjectRenderStreamBase interface has these methods.

 

ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects  

Puts the system into the state where audio object data can be submitted for processing and the
ISpatialAudioObject state can be modified.

ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects  

Notifies the system that the app has finished supplying audio data for the spatial audio objects
activated with ActivateSpatialAudioObject.

ISpatialAudioObjectRenderStreamBase::GetAvailableDynamicObjectCount  

Gets the number of dynamic spatial audio objects that are currently available.

ISpatialAudioObjectRenderStreamBase::GetService  

Gets additional services from the ISpatialAudioObjectRenderStream.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioObjectRenderStreamBase::Reset 

Reset a stopped audio stream.

ISpatialAudioObjectRenderStreamBase::Start  

Starts the spatial audio stream.

ISpatialAudioObjectRenderStreamBase::Stop  

Stops a running audio stream.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamBase::
BeginUpdatingAudioObjects method
(spatialaudioclient.h)
Article10/13/2021

Puts the system into the state where audio object data can be submitted for processing
and the ISpatialAudioObject state can be modified.

C++

[out] availableDynamicObjectCount

The number of dynamic audio objects that are available to be rendered for the current
processing pass. All allocated static audio objects can be rendered in every pass. For
information on audio object types, see AudioObjectType.

[out] frameCountPerBuffer

The size, in audio frames, of the buffer returned by GetBuffer.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER BeginUpdatingAudioObjects was called twice without
a matching call to EndUpdatingAudioObjects between
the two calls.

Syntax

HRESULT BeginUpdatingAudioObjects( 
  [out] UINT32 *availableDynamicObjectCount, 
  [out] UINT32 *frameCountPerBuffer 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects


SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_RESOURCES_INVALIDATED A resource associated with the spatial audio stream is
no longer valid.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream
uses an unsupported format.

This method must be called each time the event passed in the
SpatialAudioObjectRenderStreamActivationParams to
ISpatialAudioClient::ActivateSpatialAudioStream is signaled, 
even if there no audio object data to submit.

For each BeginUpdatingAudioObjects call, there should be a corresponding call to
EndUpdatingAudioObjects call. 
If BeginUpdatingAudioObjects is called twice without a call EndUpdatingAudioObjects
between them, the second call to 
BeginUpdatingAudioObjects will return SPTLAUDCLNT_E_OUT_OF_ORDER.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioobjectrenderstreamactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-endupdatingaudioobjects
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamBase::
EndUpdatingAudioObjects method
(spatialaudioclient.h)
Article06/29/2021

Notifies the system that the app has finished supplying audio data for the spatial audio
objects activated with ActivateSpatialAudioObject.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER EndUpdatingAudioObjects was called before
BeginUpdatingAudioObjects.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

AUDCLNT_E_RESOURCES_INVALIDATED A resource associated with the spatial audio stream is
no longer valid.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream
uses an unsupported format.

Syntax

HRESULT EndUpdatingAudioObjects(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-beginupdatingaudioobjects


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The pointers retrieved with ISpatialAudioObjectBase::GetBuffer can no longer be used
after this method is called.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-getbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


ISpatialAudioObjectRenderStreamBase::
GetAvailableDynamicObjectCount
method (spatialaudioclient.h)
Article10/13/2021

Gets the number of dynamic spatial audio objects that are currently available.

C++

[out] value

The number of dynamic spatial audio objects that are currently available.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

A dynamic ISpatialAudioObject is one that was activated by setting the type parameter
to the ActivateSpatialAudioObject method to AudioObjectType_Dynamic. The system
has a limit of the maximum number of dynamic spatial audio objects that can be
activated at one time. Call Release on an ISpatialAudioObject when it is no longer being
used to free up the resource to create new dynamic spatial audio objects.

You should not call this method after streaming has started, as the value is already
provided by ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects. This
method should only be called before streaming has started, which occurs after
ISpatialAudioObjectRenderStreamBase::Start is called.

Syntax

HRESULT GetAvailableDynamicObjectCount( 
  [out] UINT32 *value 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio device associated with the spatial audio
stream is no longer valid.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream
uses an unsupported format.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


ISpatialAudioObjectRenderStreamBase::
GetService method
(spatialaudioclient.h)
Article10/13/2021

Gets additional services from the ISpatialAudioObjectRenderStream.

C++

[in] riid

The interface ID for the requested service. The client should set this parameter to one of
the following REFIID values:

IID_IAudioClock

IID_IAudioClock2

IID_IAudioStreamVolume

[out] service

Pointer to a pointer variable into which the method writes the address of an instance of
the requested interface. Through this method, the caller obtains a counted reference to
the interface. The caller is responsible for releasing the interface, when it is no longer
needed, by calling the interface's Release method. If the GetService call fails, *ppv is
NULL.

Syntax

HRESULT GetService( 
  [in]  REFIID riid, 
  [out] void   **service 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Feedback

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER Parameter ppv is NULL.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses
an unsupported format.

The GetService method supports the following service interfaces:

IAudioClock
IAudioClock2
IAudioStreamVolume

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudioclock2
https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nn-audioclient-iaudiostreamvolume
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamBase::
Reset method (spatialaudioclient.h)
Article06/29/2021

Reset a stopped audio stream.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_STREAM_NOT_STOPPED The audio stream has not been stopped. Stop the
stream by calling Stop.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or
the audio hardware or associated hardware
resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream
uses an unsupported format.

Resetting the audio stream flushes all pending data and resets the audio clock stream
position to 0. Resetting the stream also causes all active ISpatialAudioObject instances
to be revoked. 
A subsequent call to Start causes the stream to start from 0 position.

Syntax

HRESULT Reset(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-start


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The stream must have been previously stopped with a call to Stop or the method will fail
and return SPTLAUDCLNT_E_STREAM_NOT_STOPPED.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-stop
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


ISpatialAudioObjectRenderStreamBase::
Start method (spatialaudioclient.h)
Article06/29/2021

Starts the spatial audio stream.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_STREAM_NOT_STOPPED The audio stream has not been stopped. Stop the
stream by calling Stop.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or
the audio hardware or associated hardware
resources have been reconfigured, disabled,
removed, or otherwise made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream
uses an unsupported format.

Starting the stream causes data flow between the endpoint buffer and the audio engine. 
The first time this method is called, the stream's audio clock position will be at 0. 
Otherwise, the clock resumes from its position at the time that the stream was last
paused with a call to Stop. 

Syntax

HRESULT Start(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/audioclient/nf-audioclient-iaudioclient-stop
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-stop


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Call Reset to reset the clock position to 0 and cause all active ISpatialAudioObject
instances to be revoked.

The stream must have been previously stopped with a call to Stop or the method will fail
and return SPTLAUDCLNT_E_STREAM_NOT_STOPPED.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-reset
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-stop
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


ISpatialAudioObjectRenderStreamBase::
Stop method (spatialaudioclient.h)
Article06/29/2021

Stops a running audio stream.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial
audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses
an unsupported format.

Stopping stream causes data to stop flowing between the endpoint buffer and the audio
engine. 
You can consider this operation to pause the stream because it leaves the stream's
audio clock at its current stream position and does not reset it to 0. A subsequent call to
Start causes the stream to resume running from the current position. 

Syntax

HRESULT Stop(); 

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-start


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Call Reset to reset the clock position to 0 and cause all active ISpatialAudioObject
instances to be revoked.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStream

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreambase-reset
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


ISpatialAudioObjectRenderStreamNotify
interface (spatialaudioclient.h)
Article07/22/2021

Provides notifications for spatial audio clients to respond to changes in the state of an
ISpatialAudioObjectRenderStream.

You register the object that implements this interface by assigning it to the NotifyObject
parameter of the SpatialAudioClientActivationParams structure passed into the
ISpatialAudioClient::ActivateSpatialAudioStream method. After registering its
ISpatialAudioObjectRenderStreamNotify interface, the client receives event
notifications in the form of callbacks through the
OnAvailableDynamicObjectCountChange method in the interface.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectRenderStreamNotify interface inherits from the IUnknown
interface. ISpatialAudioObjectRenderStreamNotify also has these types of members:

The ISpatialAudioObjectRenderStreamNotify interface has these methods.

 

ISpatialAudioObjectRenderStreamNotify::OnAvailableDynamicObjectCountChange  

Notifies the spatial audio client when the rendering capacity for an
ISpatialAudioObjectRenderStream is about to change, specifies the time after which the change
will occur, and specifies the number of dynamic audio objects that will be available after the
change.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ns-spatialaudioclient-spatialaudioclientactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstreamnotify-onavailabledynamicobjectcountchange
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudioclient.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamNotify
::OnAvailableDynamicObjectCountChan
ge method (spatialaudioclient.h)
Article10/13/2021

Notifies the spatial audio client when the rendering capacity for an
ISpatialAudioObjectRenderStream is about to change, specifies the time after which the
change will occur, and specifies the number of dynamic audio objects that will be
available after the change.

C++

[in] sender

The spatial audio render stream for which the available dynamic object count is
changing.

[in] hnsComplianceDeadlineTime

The time after which the spatial resource limit will change, in 100-nanosecond units. A
value of 0 means that the change will occur immediately.

[in] availableDynamicObjectCountChange

The number of dynamic spatial audio objects that will be available to the stream after
hnsComplianceDeadlineTime.

Syntax

HRESULT OnAvailableDynamicObjectCountChange( 
  [in] ISpatialAudioObjectRenderStreamBase *sender, 
  [in] LONGLONG                            hnsComplianceDeadlineTime, 
  [in] UINT32                              availableDynamicObjectCountChange 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

A dynamic ISpatialAudioObject is one that was activated by setting the type parameter
to the ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method to
AudioObjectType_Dynamic. The client has a limit of the maximum number of dynamic
spatial audio objects that can be activated at one time. When the capacity of the audio
rendering pipeline changes, the system will dynamically adjust the maximum number of
concurrent dynamic spatial audio objects. Before doing so, the system will call
OnAvailableDynamicObjectCountChange to notify clients of the resource limit change.

Call Release on an ISpatialAudioObject when it is no longer being used to free up the
resource to create new dynamic spatial audio objects.

   

Target Platform Windows

Header spatialaudioclient.h

ISpatialAudioObjectRenderStreamNotify

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectrenderstream-activatespatialaudioobject
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstreamnotify


SPATIAL_AUDIO_STREAM_OPTIONS
enumeration (spatialaudioclient.h)
Article10/22/2022

Specifies audio stream options for calls to
ISpatialAudioClient::ActivateSpatialAudioStream (spatialaudioclient.h).

C++

 

SPATIAL_AUDIO_STREAM_OPTIONS_NONE  
No stream options.

SPATIAL_AUDIO_STREAM_OPTIONS_OFFLOAD  
The stream should support audio offloading. For more information, see ISpatialAudioClient2.

This enumeration value is used by the version 2 structures for spatial audio activation
parameters.

SpatialAudioObjectRenderStreamActivationParams2
SpatialAudioHrtfActivationParams2
SpatialAudioObjectRenderStreamForMetadataActivationParams2

   

Syntax

typedef enum SPATIAL_AUDIO_STREAM_OPTIONS { 
  SPATIAL_AUDIO_STREAM_OPTIONS_NONE, 
  SPATIAL_AUDIO_STREAM_OPTIONS_OFFLOAD 
} ; 

Constants

Remarks

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header spatialaudioclient.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioClientActivationParams
structure (spatialaudioclient.h)
Article06/24/2021

Represents optional activation parameters for a spatial audio render stream. Pass this
structure to ActivateAudioInterfaceAsync when activating an ISpatialAudioClient
interface.

C++

tracingContextId

An app-defined context identifier, used for event logging.

appId

An identifier for the client app, used for event logging.

The major version number of the client app, used for event logging.

The first minor version number of the client app, used for event logging.

Syntax

typedef struct SpatialAudioClientActivationParams { 
  GUID tracingContextId; 
  GUID appId; 
  int  majorVersion; 
  int  minorVersion1; 
  int  minorVersion2; 
  int  minorVersion3; 
} SpatialAudioClientActivationParams; 

Members

majorVersion

minorVersion1

minorVersion2

https://learn.microsoft.com/en-us/windows/desktop/api/mmdeviceapi/nf-mmdeviceapi-activateaudiointerfaceasync
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioclient


The second minor version number of the client app, used for event logging.

####### minorVersion3

The third minor version number of the client app, used for event logging.

majorVersion

minorVersion1

minorVersion2

minorVersion3

The following example code shows how to initialize this structure.

C++

To access the ActivateAudioIntefaceAsync, you will need to link to mmdevapi.lib.

   

Header spatialaudioclient.h

Remarks

PROPVARIANT var;  
PropVariantInit(&var);   
auto p = reinterpret_cast<SpatialAudioClientActivationParams *>
(CoTaskMemAlloc(sizeof(SpatialAudioClientActivationParams)));   
if (nullptr == p) { ... }  
p->tracingContextId = /* context identifier */;   
p->appId = /* app identifier */;   
p->majorVersion = /* app version info */;   
p->majorVersionN = /* app version info */; 
var.vt = VT_BLOB; 
var.blob.cbSize = sizeof(*p); 
var.blob.pBlobData = reinterpret_cast<BYTE *>(p);  
hr = ActivateAudioInterfaceAsync(device, __uuidof(ISpatialAudioClient), 
&var, ...); 
// ... 
ropVariantClear(&var); 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioObjectRenderStreamActivat
ionParams structure
(spatialaudioclient.h)
Article06/24/2021

Represents activation parameters for a spatial audio render stream. Pass this structure to
ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

C++

ObjectFormat

Format descriptor for a single spatial audio object. All objects used by the stream must
have the same format and the format must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously,
ISpatialAudioClient::ActivateSpatialAudioStream will fail with this error
SPTLAUDCLNT_E_NO_MORE_OBJECTS.

Syntax

typedef struct SpatialAudioObjectRenderStreamActivationParams { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
} SpatialAudioObjectRenderStreamActivationParams; 

Members

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

MaxDynamicObjectCount

The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioObjectRenderStream.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioObjectRenderStream. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

   

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


SpatialAudioObjectRenderStreamActivat
ionParams2 structure
(spatialaudioclient.h)
Article02/26/2022

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioObjectRenderStreamActivationParams (spatialaudioclient.h) with the ability
to specify stream options. Pass this structure to
ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

C++

ObjectFormat

Format descriptor for a single spatial audio object. All objects used by the stream must
have the same format and the format must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

Syntax

typedef struct SpatialAudioObjectRenderStreamActivationParams2 { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
  SPATIAL_AUDIO_STREAM_OPTIONS          Options; 
} SpatialAudioObjectRenderStreamActivationParams2; 

Members

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible


Feedback

Was this page helpful?

The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously,
ISpatialAudioClient::ActivateSpatialAudioStream will fail with this error
SPTLAUDCLNT_E_NO_MORE_OBJECTS.

MaxDynamicObjectCount

The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioObjectRenderStream.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioObjectRenderStream. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

Options

A member of the SPATIAL_AUDIO_STREAM_OPTIONS emumeration, specifying options
for the activated audio stream.

   

Minimum supported client Windows Build 22000

Header spatialaudioclient.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


spatialaudiohrtf.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

spatialaudiohrtf.h contains the following programming interfaces:

 

ISpatialAudioObjectForHrtf  

Represents an object that provides audio data to be rendered from a position in 3D space, relative
to the user, a head-relative transfer function (HRTF).

ISpatialAudioObjectRenderStreamForHrtf  

Provides methods for controlling an Hrtf spatial audio object render stream, including starting,
stopping, and resetting the stream.

 

SpatialAudioHrtfActivationParams  

Specifies the activation parameters for an ISpatialAudioRenderStreamForHrtf.

SpatialAudioHrtfActivationParams2  

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioHrtfActivationParams with the ability to specify stream options.

SpatialAudioHrtfDirectivity  

Represents an omnidirectional model for an ISpatialAudioObjectForHrtf. The omnidirectional
emission is interpolated linearly with the directivity model specified in the Type field based on the
value of the Scaling field.

SpatialAudioHrtfDirectivityCardioid  

Represents a cardioid-shaped directivity model for an ISpatialAudioObjectForHrtf.

Interfaces

Structures



Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

SpatialAudioHrtfDirectivityCone  

Represents a cone-shaped directivity model for an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDirectivityUnion  

Defines a spatial audio directivity model for an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDistanceDecay  

Represents the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

 

SpatialAudioHrtfDirectivityType  

Specifies the shape in which sound is emitted by an ISpatialAudioObjectForHrtf.

SpatialAudioHrtfDistanceDecayType  

Specifies the type of decay applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

SpatialAudioHrtfEnvironmentType  

Specifies the type of acoustic environment that is simulated when audio is processed for an
ISpatialAudioObjectForHrtf.

Enumerations

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectForHrtf interface
(spatialaudiohrtf.h)
Article10/05/2021

Represents an object that provides audio data to be rendered from a position in 3D
space, relative to the user, a head-relative transfer function (HRTF). Spatial audio objects
can be static or dynamic, which you specify with the type parameter to the
ISpatialAudioObjectRenderStreamForHrtf::ActivateSpatialAudioObjectForHrtf method.
Dynamic audio objects can be placed in an arbitrary position in space and can be moved
over time. Static audio objects are assigned to one or more channels, defined in the
AudioObjectType enumeration, that each correlate to a fixed speaker location that may
be a physical or a virtualized speaker

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectForHrtf interface inherits from ISpatialAudioObjectBase.
ISpatialAudioObjectForHrtf also has these types of members:

The ISpatialAudioObjectForHrtf interface has these methods.

 

ISpatialAudioObjectForHrtf::SetDirectivity  

Sets the spatial audio directivity model for the ISpatialAudioObjectForHrtf.

ISpatialAudioObjectForHrtf::SetDistanceDecay  

Sets the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

ISpatialAudioObjectForHrtf::SetEnvironment  

Sets the type of acoustic environment that is simulated when audio is processed for the
ISpatialAudioObjectForHrtf.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nf-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf-activatespatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype


Feedback

 

ISpatialAudioObjectForHrtf::SetGain  

Sets the gain for the ISpatialAudioObjectForHrtf.

ISpatialAudioObjectForHrtf::SetOrientation  

Sets the orientation in 3D space, relative to the listener's frame of reference, from which the
ISpatialAudioObjectForHrtf audio data will be rendered.

ISpatialAudioObjectForHrtf::SetPosition  

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObjectForHrtf
audio data will be rendered.

 

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectBase

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectBase interface.

Requirements

See also

ﾂ Yes ﾄ No



Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectForHrtf::SetDirectivity
method (spatialaudiohrtf.h)
Article10/05/2021

Sets the spatial audio directivity model for the ISpatialAudioObjectForHrtf.

C++

directivity

The spatial audio directivity model. This value can be one of the following structures:

SpatialAudioHrtfDirectivity
SpatialAudioHrtfDirectivityCardioid
SpatialAudioHrtfDirectivityCone

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetDirectivity.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

Syntax

HRESULT SetDirectivity( 
  SpatialAudioHrtfDirectivityUnion *directivity 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfdirectivity
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfdirectivitycardioid
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfdirectivitycone
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The SpatialAudioHrtfDirectivity structure represents an omnidirectional model that can be linearly
interpolated with a cardioid or cone model.

If SetDirectivity is not called, the default type of SpatialAudioHrtfDirectivity_OmniDirectional is
used with no interpolation.

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfdirectivity
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ne-spatialaudiohrtf-spatialaudiohrtfdirectivitytype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectForHrtf::SetDistanceDec
ay method (spatialaudiohrtf.h)
Article10/13/2021

Sets the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

C++

[in] distanceDecay

The decay model.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetDistanceDecay.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

If SetEnvironment is not called, the default values are used.

Syntax

HRESULT SetDistanceDecay( 
  [in] SpatialAudioHrtfDistanceDecay *distanceDecay 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectForHrtf::SetEnvironment
method (spatialaudiohrtf.h)
Article10/13/2021

Sets the type of acoustic environment that is simulated when audio is processed for the
ISpatialAudioObjectForHrtf.

C++

[in] environment

A value specifying the type of acoustic environment that is simulated when audio is processed for
the ISpatialAudioObjectForHrtf.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetEnvironment.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

If SetEnvironment is not called, the default value of SpatialAudioHrtfEnvironment_Small is used.

Syntax

HRESULT SetEnvironment( 
  [in] SpatialAudioHrtfEnvironmentType environment 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ne-spatialaudiohrtf-spatialaudiohrtfenvironmenttype


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectForHrtf::SetGain method
(spatialaudiohrtf.h)
Article10/13/2021

Sets the gain for the ISpatialAudioObjectForHrtf in dB.

C++

[in] gain

The gain for the ISpatialAudioObjectForHrtf in dB.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetGain.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

This is valid only for spatial audio objects configured to use the
SpatialAudioHrtfDistanceDecay_CustomDecay decay type. Set the decay type of an
ISpatialAudioObjectForHrtf object by calling SetDistanceDecay. Set the default decay type for an

Syntax

HRESULT SetGain( 
  [in] float gain 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ne-spatialaudiohrtf-spatialaudiohrtfdistancedecaytype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nf-spatialaudiohrtf-ispatialaudioobjectforhrtf-setdistancedecay


Feedback

Was this page helpful?

Get help at Microsoft Q&A

all objects in an HRTF render stream by setting the DistanceDecay field of the
SpatialAudioHrtfActivationParams passed into ISpatialAudioClient::ActivateSpatialAudioStream.

If SetGain is never called, the default value of 0.0 is used. After SetGain is called, the gain that is
set will be used for the audio object until the gain is changed with another call to SetGain.

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectForHrtf::SetOrientation
method (spatialaudiohrtf.h)
Article10/13/2021

Sets the orientation in 3D space, relative to the listener's frame of reference, from which the
ISpatialAudioObjectForHrtf audio data will be rendered.

C++

[in] orientation

An array of floats defining row-major 3x3 rotation matrix.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not
limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
was not called before the call to SetOrientation.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a
previous audio processing pass. SetEndOfStream is called implicitly
by the system if GetBuffer is not called within an audio processing
pass (between calls to
ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and
ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

If SetOrientation is never called, the default value of an identity matrix is used. After
SetOrientation is called, the orientation that is set will be used for the audio object until the
orientation is changed with another call to SetOrientation.

Syntax

HRESULT SetOrientation( 
  [in] const SpatialAudioHrtfOrientation *orientation 
); 

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectForHrtf::SetPosition method
(spatialaudiohrtf.h)
Article10/13/2021

Sets the position in 3D space, relative to the listener, from which the ISpatialAudioObjectForHrtf audio
data will be rendered.

C++

[in] x

The x position of the audio object, in meters, relative to the listener. Positive values are to the right of the
listener and negative values are to the left.

[in] y

The y position of the audio object, in meters, relative to the listener. Positive values are above the listener
and negative values are below.

[in] z

The z position of the audio object, in meters, relative to the listener. Positive values are behind the
listener and negative values are in front.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to,
the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_OUT_OF_ORDER ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects was
not called before the call to SetPosition.

SPTLAUDCLNT_E_RESOURCES_INVALIDATED SetEndOfStream was called either explicitly or implicitly in a previous
audio processing pass. SetEndOfStream is called implicitly by the system
if GetBuffer is not called within an audio processing pass (between calls
to ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects
and ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects).

Syntax

HRESULT SetPosition( 
  [in] float x, 
  [in] float y, 
  [in] float z 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt779300(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

SPTLAUDCLNT_E_PROPERTY_NOT_SUPPORTED The ISpatialAudioObjectForHrtf is not of type AudioObjectType_Dynamic.
Set the type of the audio object with the type parameter to the
ISpatialAudioObjectRenderStreamBase::ActivateSpatialAudioObjectForHrtf
method.

This method can only be called on a ISpatialAudioObjectForHrtf that is of type
AudioObjectType_Dynamic. Set the type of the audio object with the type parameter to the
ISpatialAudioObjectRenderStreamForHrtf::ActivateSpatialAudioObjectForHrtf method.

Position values use a right-handed Cartesian coordinate system, where each unit represents 1 meter. The
coordinate system is relative to the listener where the origin (x=0.0, y=0.0, z=0.0) represents the center
point between the listener's ears.

If SetPosition is never called, the origin (x=0.0, y=0.0, z=0.0) is used as the default position. After
SetPosition is called, the position that is set will be used for the audio object until the position is
changed with another call to SetPosition.

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectForHrtf

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nf-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf-activatespatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nf-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf-activatespatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


ISpatialAudioObjectRenderStreamForHr
tf interface (spatialaudiohrtf.h)
Article10/05/2021

Provides methods for controlling an Hrtf spatial audio object render stream, including
starting, stopping, and resetting the stream. Also provides methods for activating new
ISpatialAudioObjectForHrtf instances and notifying the system when you are beginning
and ending the process of updating activated spatial audio objects and data.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectRenderStreamForHrtf interface inherits from
ISpatialAudioObjectRenderStreamBase. ISpatialAudioObjectRenderStreamForHrtf also
has these types of members:

The ISpatialAudioObjectRenderStreamForHrtf interface has these methods.

 

ISpatialAudioObjectRenderStreamForHrtf::ActivateSpatialAudioObjectForHrtf  

Activates an ISpatialAudioObjectForHrtf for audio rendering.

 

   

Inheritance

Methods

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectRenderStreamBase interface.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioObjectRenderStreamBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamForHr
tf::ActivateSpatialAudioObjectForHrtf
method (spatialaudiohrtf.h)
Article10/13/2021

Activates an ISpatialAudioObjectForHrtf for audio rendering.

C++

[in] type

The type of audio object to activate. For dynamic audio objects, this value must be
AudioObjectType_Dynamic. For static audio objects, specify one of the static audio
channel values from the enumeration. Specifying AudioObjectType_None will produce
an audio object that is not spatialized.

[out] audioObject

Receives a pointer to the activated interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_NO_MORE_OBJECTS The system has reached the maximum number of
simultaneous audio objects.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial

Syntax

HRESULT ActivateSpatialAudioObjectForHrtf( 
  [in]  AudioObjectType            type, 
  [out] ISpatialAudioObjectForHrtf **audioObject 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

Was this page helpful?

audio stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the
audio hardware or associated hardware resources have
been reconfigured, disabled, removed, or otherwise
made unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses
an unsupported format.

A dynamic ISpatialAudioObjectForHrtf is one that was activated by setting the type
parameter to the ActivateSpatialAudioObjectForHrtf method to
AudioObjectType_Dynamic. The client has a limit of the maximum number of dynamic
spatial audio objects that can be activated at one time. After the limit has been reached,
attempting to activate additional audio objects will result in this method returning an
SPTLAUDCLNT_E_NO_MORE_OBJECTS error. To avoid this, call Release on each dynamic
ISpatialAudioObjectForHrtf after it is no longer being used to free up the resource so
that it can be reallocated. See ISpatialAudioObjectgBase::IsActive and
ISpatialAudioObjectgBase::SetEndOfStream for more information on the managing the
lifetime of spatial audio objects.

   

Target Platform Windows

Header spatialaudiohrtf.h

ISpatialAudioRenderStreamForHrtf

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-isactive
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


SpatialAudioHrtfActivationParams
structure (spatialaudiohrtf.h)
Article10/05/2021

Specifies the activation parameters for an ISpatialAudioRenderStreamForHrtf.

C++

ObjectFormat

Format descriptor for spatial audio objects associated with the stream. All objects must
have the same format and must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously, no dynamic audio objects will be activated.

MaxDynamicObjectCount

Syntax

typedef struct SpatialAudioHrtfActivationParams { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
  SpatialAudioHrtfDistanceDecay         *DistanceDecay; 
  SpatialAudioHrtfDirectivityUnion      *Directivity; 
  SpatialAudioHrtfEnvironmentType       *Environment; 
  SpatialAudioHrtfOrientation           *Orientation; 
} SpatialAudioHrtfActivationParams; 

Members

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf
https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)


The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioRenderStreamForHrtf.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioRenderStreamForHrtf. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

DistanceDecay

Optional default value for the decay model used for ISpatialAudioObjectForHrtf objects
associated with the stream. nullptr if unused.

Directivity

Optional default value for the spatial audio directivity model used for
ISpatialAudioObjectForHrtf objects associated with the stream. nullptr if unused.

Environment

Optional default value for the type of environment that is simulated when audio is
processed for ISpatialAudioObjectForHrtf objects associated with the stream. nullptr if
unused.

Orientation

Optional default value for the orientation of ISpatialAudioObjectForHrtf objects
associated with the stream. nullptr if unused.

   

Header spatialaudiohrtf.h

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioHrtfActivationParams2
structure (spatialaudiohrtf.h)
Article02/26/2022

Represents activation parameters for a spatial audio render stream, extending
SpatialAudioHrtfActivationParams (spatialaudiohrtf.h) with the ability to specify stream
options.

C++

ObjectFormat

Format descriptor for spatial audio objects associated with the stream. All objects must
have the same format and must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

Syntax

typedef struct SpatialAudioHrtfActivationParams2 { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
  SpatialAudioHrtfDistanceDecay         *DistanceDecay; 
  SpatialAudioHrtfDirectivityUnion      *Directivity; 
  SpatialAudioHrtfEnvironmentType       *Environment; 
  SpatialAudioHrtfOrientation           *Orientation; 
  SPATIAL_AUDIO_STREAM_OPTIONS          Options; 
} SpatialAudioHrtfActivationParams2; 

Members

https://learn.microsoft.com/en-us/previous-versions/dd757713(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/dd390971(v=vs.85)


The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously, no dynamic audio objects will be activated.

MaxDynamicObjectCount

The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioRenderStreamForHrtf.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioRenderStreamForHrtf. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

DistanceDecay

Optional default value for the decay model used for ISpatialAudioObjectForHrtf objects
associated with the stream. nullptr if unused.

Directivity

Optional default value for the spatial audio directivity model used for
ISpatialAudioObjectForHrtf objects associated with the stream. nullptr if unused.

Environment

Optional default value for the type of environment that is simulated when audio is
processed for ISpatialAudioObjectForHrtf objects associated with the stream. nullptr if
unused.

Orientation

Optional default value for the orientation of ISpatialAudioObjectForHrtf objects
associated with the stream. nullptr if unused.

Options

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectrenderstreamforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


A member of the SPATIAL_AUDIO_STREAM_OPTIONS emumeration, specifying options
for the activated audio stream.

The following example demostrates activating a spatial audio render stream for HRTF
with stream options.

C++

Remarks

void CreateSpatialAudioObjectRenderStreamForHrtf( 
    _In_ ISpatialAudioClient2* spatialAudioClient, 
    _In_ WAVEFORMATEX const* objectFormat, 
    AudioObjectType staticObjectTypeMask, 
    UINT32 minDynamicObjectCount,
    UINT32 maxDynamicObjectCount,
    AUDIO_STREAM_CATEGORY streamCategory, 
    _In_ HANDLE eventHandle, 
    _In_opt_ ISpatialAudioObjectRenderStreamNotify* notifyObject, 
    _In_opt_ SpatialAudioHrtfDistanceDecay* distanceDecay, 
    _In_opt_ SpatialAudioHrtfDirectivityUnion* directivity, 
    _In_opt_ SpatialAudioHrtfEnvironmentType* environment, 
    _In_opt_ SpatialAudioHrtfOrientation* orientation, 
    bool enableOffload, 
    _COM_Outptr_ ISpatialAudioObjectRenderStreamForHrtf** stream) 
{ 
    SpatialAudioHrtfActivationParams2 streamActivationParams = 
    { 
        objectFormat, 
        staticObjectTypeMask, 
        minDynamicObjectCount, 
        maxDynamicObjectCount, 
        streamCategory, 
        eventHandle, 
        notifyObject, 
        distanceDecay, 
        directivity, 
        environment, 
        orientation, 
        enableOffload ? SPATIAL_AUDIO_STREAM_OPTIONS_OFFLOAD : 
SPATIAL_AUDIO_STREAM_OPTIONS_NONE
    }; 

    PROPVARIANT activateParamsPropVariant = {}; 
    activateParamsPropVariant.vt = VT_BLOB; 
    activateParamsPropVariant.blob.cbSize = sizeof(streamActivationParams); 
    activateParamsPropVariant.blob.pBlobData = reinterpret_cast<BYTE*>
(&streamActivationParams); 

    *stream = nullptr; 
    THROW_IF_FAILED(spatialAudioClient-



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header spatialaudiohrtf.h

>ActivateSpatialAudioStream(&activateParamsPropVariant, 
IID_PPV_ARGS(stream))); 
} 

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

SpatialAudioHrtfDirectivity structure
(spatialaudiohrtf.h)
Article10/05/2021

Represents an omnidirectional model for an ISpatialAudioObjectForHrtf. The
omnidirectional emission is interpolated linearly with the directivity model specified in
the Type field based on the value of the Scaling field.

C++

Type

The type of shape in which sound is emitted by an ISpatialAudioObjectForHrtf.

Scaling

The amount of linear interpolation applied between omnidirectional sound and the
directivity specified in the Type field. This is a normalized value between 0 and 1.0 where
0 is omnidirectional and 1.0 is full directivity using the specified type.

   

Header spatialaudiohrtf.h

Syntax

typedef struct SpatialAudioHrtfDirectivity { 
  SpatialAudioHrtfDirectivityType Type; 
  float                           Scaling; 
} SpatialAudioHrtfDirectivity; 

Members

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

Get help at Microsoft Q&A

SpatialAudioHrtfDirectivityCardioid
structure (spatialaudiohrtf.h)
Article10/05/2021

Represents a cardioid-shaped directivity model for an ISpatialAudioObjectForHrtf.

C++

directivity

A structure that expresses the direction in which sound is emitted by an
ISpatialAudioObjectForHrtf.

Order

The order of the cardioid.

   

Header spatialaudiohrtf.h

Syntax

typedef struct SpatialAudioHrtfDirectivityCardioid { 
  SpatialAudioHrtfDirectivity directivity; 
  float                       Order; 
} SpatialAudioHrtfDirectivityCardioid; 

Members

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

SpatialAudioHrtfDirectivityCone
structure (spatialaudiohrtf.h)
Article10/05/2021

Represents a cone-shaped directivity model for an ISpatialAudioObjectForHrtf.

C++

directivity

A structure that expresses the direction in which sound is emitted by an
ISpatialAudioObjectForHrtf.

InnerAngle

The inner angle of the cone.

OuterAngle

The outer angle of the cone.

   

Header spatialaudiohrtf.h

Syntax

typedef struct SpatialAudioHrtfDirectivityCone { 
  SpatialAudioHrtfDirectivity directivity; 
  float                       InnerAngle; 
  float                       OuterAngle; 
} SpatialAudioHrtfDirectivityCone; 

Members

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

SpatialAudioHrtfDirectivityType
enumeration (spatialaudiohrtf.h)
Article01/31/2022

Specifies the shape in which sound is emitted by an ISpatialAudioObjectForHrtf.

C++

 

SpatialAudioHrtfDirectivity_OmniDirectional  
Value: 0 
The sound is emitted in all directions.

SpatialAudioHrtfDirectivity_Cardioid  
The sound is emitted in a cardioid shape.

SpatialAudioHrtfDirectivity_Cone  
The sound is emitted in a cone shape.

   

Header spatialaudiohrtf.h

Syntax

typedef enum SpatialAudioHrtfDirectivityType { 
  SpatialAudioHrtfDirectivity_OmniDirectional = 0, 
  SpatialAudioHrtfDirectivity_Cardioid, 
  SpatialAudioHrtfDirectivity_Cone 
} ; 

Constants

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

SpatialAudioHrtfDirectivityUnion union
(spatialaudiohrtf.h)
Article10/05/2021

Defines a spatial audio directivity model for an ISpatialAudioObjectForHrtf.

C++

Cone

A cone-shaped directivity model

Cardiod

Omni

And omni-direction directivity model that can be interpolated linearly with one of the
other directivity models.

   

Header spatialaudiohrtf.h

Syntax

typedef union SpatialAudioHrtfDirectivityUnion { 
  SpatialAudioHrtfDirectivityCone     Cone; 
  SpatialAudioHrtfDirectivityCardioid Cardiod; 
  SpatialAudioHrtfDirectivity         Omni; 
} SpatialAudioHrtfDirectivityUnion; 

Members

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


SpatialAudioHrtfDistanceDecay
structure (spatialaudiohrtf.h)
Article10/05/2021

Represents the decay model that is applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

C++

Type

The type of decay, natural or custom. The default value for this field is
SpatialAudioHrtfDistanceDecay_NaturalDecay.

MaxGain

MinGain

UnityGainDistance

CutoffDistance

   

Header spatialaudiohrtf.h

Syntax

typedef struct SpatialAudioHrtfDistanceDecay { 
  SpatialAudioHrtfDistanceDecayType Type; 
  float                             MaxGain; 
  float                             MinGain; 
  float                             UnityGainDistance; 
  float                             CutoffDistance; 
} SpatialAudioHrtfDistanceDecay; 

Members

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

Was this page helpful?

SpatialAudioHrtfDistanceDecayType
enumeration (spatialaudiohrtf.h)
Article01/31/2022

Specifies the type of decay applied over distance from the position of an
ISpatialAudioObjectForHrtf to the position of the listener.

C++

 

SpatialAudioHrtfDistanceDecay_NaturalDecay  
Value: 0 
A natural decay over distance, as constrained by minimum and maximum gain distance limits. The
output drops to silent at the distance specified by SpatialAudioHrtfDistanceDecay.CutoffDistance.

SpatialAudioHrtfDistanceDecay_CustomDecay  
A custom gain curve, within the maximum and minimum gain limit.

   

Header spatialaudiohrtf.h

Syntax

typedef enum SpatialAudioHrtfDistanceDecayType { 
  SpatialAudioHrtfDistanceDecay_NaturalDecay = 0, 
  SpatialAudioHrtfDistanceDecay_CustomDecay 
} ; 

Constants

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/ns-spatialaudiohrtf-spatialaudiohrtfdistancedecay


Get help at Microsoft Q&A

https://learn.microsoft.com/answers/products/


SpatialAudioHrtfEnvironmentType
enumeration (spatialaudiohrtf.h)
Article01/31/2022

Specifies the type of acoustic environment that is simulated when audio is processed for
an ISpatialAudioObjectForHrtf.

C++

 

SpatialAudioHrtfEnvironment_Small  
Value: 0 
A small room.

SpatialAudioHrtfEnvironment_Medium  
A medium-sized room.

SpatialAudioHrtfEnvironment_Large  
A large room.

SpatialAudioHrtfEnvironment_Outdoors  
An outdoor space.

SpatialAudioHrtfEnvironment_Average  
Reserved for Microsoft use. Apps should not use this value.

Syntax

typedef enum SpatialAudioHrtfEnvironmentType { 
  SpatialAudioHrtfEnvironment_Small = 0, 
  SpatialAudioHrtfEnvironment_Medium, 
  SpatialAudioHrtfEnvironment_Large, 
  SpatialAudioHrtfEnvironment_Outdoors, 
  SpatialAudioHrtfEnvironment_Average 
} ; 

Constants

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiohrtf/nn-spatialaudiohrtf-ispatialaudioobjectforhrtf


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Header spatialaudiohrtf.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


spatialaudiometadata.h header
Article01/24/2023

This header is used by Core Audio APIs. For more information, see:

Core Audio APIs

spatialaudiometadata.h contains the following programming interfaces:

 

ISpatialAudioMetadataClient  

Provides a class factory for creating ISpatialAudioMetadataItems, ISpatialAudioMetadataWriter,
ISpatialAudioMetadataReader, and ISpatialAudioMetadataCopier objects.

ISpatialAudioMetadataCopier  

Provides methods for copying all or subsets of metadata items from a source
SpatialAudioMetadataItems into a destination SpatialAudioMetadataItems.

ISpatialAudioMetadataItems  

Represents a buffer of spatial audio metadata items.

ISpatialAudioMetadataItemsBuffer  

Provides methods for attaching buffers to SpatialAudioMetadataItems for in-place storage of
data.

ISpatialAudioMetadataReader  

Provides methods for extracting spatial audio metadata items and item command value pairs
from an ISpatialAudioMetadataItems object.

ISpatialAudioMetadataWriter  

Provides methods for storing spatial audio metadata items positioned within a range of
corresponding audio frames.

ISpatialAudioObjectForMetadataCommands  

Used to write metadata commands for spatial audio.

Interfaces



 

ISpatialAudioObjectForMetadataItems  

Used to write spatial audio metadata for applications that require multiple metadata items per
buffer with frame-accurate placement.

ISpatialAudioObjectRenderStreamForMetadata  

Provides methods for controlling a spatial audio object render stream for metadata, including
starting, stopping, and resetting the stream.

 

SpatialAudioMetadataItemsInfo  

Provides information about an ISpatialAudioMetadataItems object. Get a copy of this structure by
calling GetInfo.

SpatialAudioObjectRenderStreamForMetadataActivationParams  

Represents activation parameters for a spatial audio render stream for metadata. Pass this
structure to ISpatialAudioClient::ActivateSpatialAudioStream when activating a stream.

SpatialAudioObjectRenderStreamForMetadataActivationParams2  

Represents activation parameters for a spatial audio render stream for metadata, extending
SpatialAudioObjectRenderStreamForMetadataActivationParams with the ability to specify stream
options.

 

SpatialAudioMetadataCopyMode  

Specifies the copy mode used when calling
ISpatialAudioMetadataCopier::CopyMetadataForFrames.

SpatialAudioMetadataWriterOverflowMode  

Specifies the desired behavior when an ISpatialAudioMetadataWriter attempts to write more
items into the metadata buffer than was specified when the client was initialized.

Structures

Enumerations



Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataClient interface
(spatialaudiometadata.h)
Article07/22/2021

Provides a class factory for creating ISpatialAudioMetadataItems,
ISpatialAudioMetadataWriter, ISpatialAudioMetadataReader, and
ISpatialAudioMetadataCopier objects. When an ISpatialAudioMetadataItems is
activated, a metadata format ID is specified, which defines the metadata format
enforced for all objects created from this factory. If the specified format is not supported
by the current audio render endpoint, the class factory will not successfully activate the
interface and will return an error.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataClient interface inherits from the IUnknown interface.
ISpatialAudioMetadataClient also has these types of members:

The ISpatialAudioMetadataClient interface has these methods.

 

ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataCopier  

Creates an ISpatialAudioMetadataWriter object for copying spatial audio metadata items from
one ISpatialAudioMetadataItems object to another.

ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataItems  

Creates an ISpatialAudioMetadataItems object for storing spatial audio metadata items.

ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataReader  

Creates an ISpatialAudioMetadataWriter object for reading spatial audio metadata items from an
ISpatialAudioMetadataItems object.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataWriter  

Creates an ISpatialAudioMetadataWriter object for writing spatial audio metadata items to an
ISpatialAudioMetadataItems object.

ISpatialAudioMetadataClient::GetSpatialAudioMetadataItemsBufferLength  

Gets the length of the buffer required to store the specified number of spatial audio metadata
items.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataClient::ActivateSp
atialAudioMetadataCopier method
(spatialaudiometadata.h)
Article10/13/2021

Creates an ISpatialAudioMetadataWriter object for copying spatial audio metadata
items from one ISpatialAudioMetadataItems object to another.

C++

[out] metadataCopier

Receives a pointer to an instance of ISpatialAudioMetadataWriter.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The provided pointer is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT ActivateSpatialAudioMetadataCopier( 
  [out] ISpatialAudioMetadataCopier **metadataCopier 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataClient

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient


ISpatialAudioMetadataClient::ActivateSp
atialAudioMetadataItems method
(spatialaudiometadata.h)
Article10/13/2021

Creates an ISpatialAudioMetadataItems object for storing spatial audio metadata items.

C++

[in] maxItemCount

The maximum number of metadata items that can be stored in the returned
ISpatialAudioMetadataItems.

[in] frameCount

The valid range of frame offset positions for metadata items stored in the returned
ISpatialAudioMetadataItems.

[out, optional] metadataItemsBuffer

If a pointer is supplied, returns an ISpatialAudioMetadataItemsBuffer interface which
provides methods for attaching caller-provided memory for storage of metadata items.
If this parameter is NULL, the object will allocate internal storage for the items. This
interface cannot be obtained via QueryInterface.

[out] metadataItems

Receives an instance ISpatialAudioMetadataItems object which can be populated with
metadata items using an by ISpatialAudioMetadataWriter or

Syntax

HRESULT ActivateSpatialAudioMetadataItems( 
  [in]            UINT16                           maxItemCount, 
  [in]            UINT16                           frameCount, 
  [out, optional] ISpatialAudioMetadataItemsBuffer **metadataItemsBuffer, 
  [out]           ISpatialAudioMetadataItems       **metadataItems 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q)
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataCopier and can be read with an ISpatialAudioMetadataReader.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The pointer provided in the metadataItems parameter is
not valid.

The value of maxItemCount or frameCount is 0.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataClient

Return value

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient


ISpatialAudioMetadataClient::ActivateSp
atialAudioMetadataReader method
(spatialaudiometadata.h)
Article10/13/2021

Creates an ISpatialAudioMetadataWriter object for reading spatial audio metadata items
from an ISpatialAudioMetadataItems object.

C++

[out] metadataReader

Receives a pointer to an instance of ISpatialAudioMetadataReader.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The provided pointer is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT ActivateSpatialAudioMetadataReader( 
  [out] ISpatialAudioMetadataReader **metadataReader 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataClient

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient


ISpatialAudioMetadataClient::ActivateSp
atialAudioMetadataWriter method
(spatialaudiometadata.h)
Article10/13/2021

Creates an ISpatialAudioMetadataWriter object for writing spatial audio metadata items
to an ISpatialAudioMetadataItems object.

C++

[in] overflowMode

A value that specifies the behavior when attempting to write more metadata items to
the ISpatialAudioMetadataItems than the maximum number of items specified when
calling ActivateSpatialAudioMetadataItems.

[out] metadataWriter

Receives a pointer to an instance of ISpatialAudioMetadataWriter.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The provided pointer is not valid.

Syntax

HRESULT ActivateSpatialAudioMetadataWriter( 
  [in]  SpatialAudioMetadataWriterOverflowMode overflowMode, 
  [out] ISpatialAudioMetadataWriter            **metadataWriter 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataClient

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient


ISpatialAudioMetadataClient::GetSpatial
AudioMetadataItemsBufferLength
method (spatialaudiometadata.h)
Article10/13/2021

Gets the length of the buffer required to store the specified number of spatial audio
metadata items. Use this method to determine the correct buffer size to use when
attaching caller-provided memory through the ISpatialAudioMetadataItemsBuffer
interface.

C++

[in] maxItemCount

The maximum number of metadata items to be stored in an
ISpatialAudioMetadataItems object.

[out] bufferLength

The length of the buffer required to store the number of spatial audio metadata items
specified in the maxItemCount parameter.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_INVALIDARG The provided pointer is not valid.

Syntax

HRESULT GetSpatialAudioMetadataItemsBufferLength( 
  [in]  UINT16 maxItemCount, 
  [out] UINT32 *bufferLength 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

The value of maxItemCount or frameCount is 0.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataClient

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient


ISpatialAudioMetadataCopier interface
(spatialaudiometadata.h)
Article07/27/2022

Provides methods for copying all or subsets of metadata items from a source
SpatialAudioMetadataItems into a destination SpatialAudioMetadataItems. The
SpatialAudioMetadataItems object, which is populated using an
ISpatialAudioMetadataWriter or ISpatialAudioMetadataCopier, has a frame count,
specified with the frameCount parameter to ActivateSpatialAudioMetadataItems, that
represents the valid range of metadata item offsets. ISpatialAudioMetadataReader
enables copying groups of items within a subrange of the total frame count. The object
maintains an internal read position, which is advanced by the number of frames
specified when a copy operation is performed.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataCopier interface inherits from the IUnknown interface.
ISpatialAudioMetadataCopier also has these types of members:

The ISpatialAudioMetadataCopier interface has these methods.

 

ISpatialAudioMetadataCopier::Close  

Completes any necessary operations on the SpatialAudioMetadataItems object and releases the
object. (ISpatialAudioMetadataCopier.Close)

ISpatialAudioMetadataCopier::CopyMetadataForFrames  

Copies metadata items from the source ISpatialAudioMetadataItems, provided to the Open
method, object to the destination ISpatialAudioMetadataItems object, specified with the
dstMetadataItems parameter.

ISpatialAudioMetadataCopier::Open  

Opens an ISpatialAudioMetadataItems object for copying.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataCopier::Close
method (spatialaudiometadata.h)
Article07/27/2022

Completes any necessary operations on the SpatialAudioMetadataItems object and
releases the object.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been
opened for reading with a call to Open or the object
has been closed for writing with a call to Close.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataCopier

ISpatialAudioMetadataReader

Syntax

HRESULT Close(); 

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataCopier::CopyMet
adataForFrames method
(spatialaudiometadata.h)
Article10/13/2021

Copies metadata items from the source ISpatialAudioMetadataItems, provided to the
Open method, object to the destination ISpatialAudioMetadataItems object, specified
with the dstMetadataItems parameter. Each call advances the internal copy position by
the number of frames in the copyFrameCount parameter.

C++

[in] copyFrameCount

The number of frames from the current copy position for which metadata items are
copied. After the copy, the internal copy position within the source
SpatialAudioMetadataItems is advanced the value specified in this parameter. Set this
value to 0 to copy the entire frame range contained in the source
SpatialAudioMetadataItems.

[in] copyMode

A value that specifies the copy mode for the operation.

[in] dstMetadataItems

A pointer to the destination SpatialAudioMetadataItems for the copy operation.

[out] itemsCopied

Syntax

HRESULT CopyMetadataForFrames( 
  [in]  UINT16                       copyFrameCount, 
  [in]  SpatialAudioMetadataCopyMode copyMode, 
  [in]  ISpatialAudioMetadataItems   *dstMetadataItems, 
  [out] UINT16                       *itemsCopied 
); 

Parameters

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-open


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Receives number of metadata items copied in the operation.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been
opened for copying with a call to Open or the object
has been closed for writing with a call to Close.

E_INVALIDARG One of the provided pointers is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataCopier

Return value

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier


ISpatialAudioMetadataCopier::Open
method (spatialaudiometadata.h)
Article10/13/2021

Opens an ISpatialAudioMetadataItems object for copying.

C++

[in] metadataItems

A pointer to an ISpatialAudioMetadataItems object to be opened for copying

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_ITEMS_ALREADY_OPEN Open has already been called on the supplied
ISpatialAudioMetadataItems since the object
was created or since the last call to Close.

E_INVALIDARG The provided pointer is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT Open( 
  [in] ISpatialAudioMetadataItems *metadataItems 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-close


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataCopier

ISpatialAudioMetadataReader

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


ISpatialAudioMetadataItems interface
(spatialaudiometadata.h)
Article07/22/2021

Represents a buffer of spatial audio metadata items. Metadata commands and values
can be written to, read from, and copied between ISpatialAudioMetadataItems using the
ISpatialAudioMetadataWriter, ISpatialAudioMetadataReader, and
ISpatialAudioMetadataCopier interfaces. Use caller-allocated memory to store metadata
items by creating an ISpatialAudioMetadataItemsBuffer.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataItems interface inherits from the IUnknown interface.
ISpatialAudioMetadataItems also has these types of members:

The ISpatialAudioMetadataItems interface has these methods.

 

ISpatialAudioMetadataItems::GetFrameCount  

Gets the total frame count of the ISpatialAudioMetadataItems, which defines valid item offsets.

ISpatialAudioMetadataItems::GetInfo  

Gets the total frame count for the ISpatialAudioMetadataItems, which defines valid item offsets.

ISpatialAudioMetadataItems::GetItemCount  

The current number of items stored by the ISpatialAudioMetadataItems.

ISpatialAudioMetadataItems::GetMaxItemCount  

The maximum number of items allowed by the ISpatialAudioMetadataItems, defined when the
object is created.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioMetadataItems::GetMaxValueBufferLength  

The size of the largest command value defined by the metadata format for the
ISpatialAudioMetadataItems.

Get an instance of this interface by calling
ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataItems.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

Remarks

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems


ISpatialAudioMetadataItems::GetFrame
Count method (spatialaudiometadata.h)
Article10/13/2021

Gets the total frame count of the ISpatialAudioMetadataItems, which defines valid item
offsets.

C++

[out] frameCount

The total frame count.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItems

Syntax

HRESULT GetFrameCount( 
  [out] UINT16 *frameCount 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataItems::GetInfo
method (spatialaudiometadata.h)
Article10/13/2021

Gets the total frame count for the ISpatialAudioMetadataItems, which defines valid item
offsets.

C++

[out] info

The total frame count, which defines valid item offsets.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItems

Syntax

HRESULT GetInfo( 
  [out] SpatialAudioMetadataItemsInfo *info 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

ISpatialAudioMetadataItems::GetItemCo
unt method (spatialaudiometadata.h)
Article10/13/2021

The current number of items stored by the ISpatialAudioMetadataItems.

C++

[out] itemCount

The current number of stored items.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItems

Syntax

HRESULT GetItemCount( 
  [out] UINT16 *itemCount 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataItems::GetMaxIte
mCount method
(spatialaudiometadata.h)
Article10/13/2021

The maximum number of items allowed by the ISpatialAudioMetadataItems, defined
when the object is created.

C++

[out] maxItemCount

The maximum number of items allowed.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItems

Syntax

HRESULT GetMaxItemCount( 
  [out] UINT16 *maxItemCount 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataItems::GetMaxVal
ueBufferLength method
(spatialaudiometadata.h)
Article10/13/2021

The size of the largest command value defined by the metadata format for the
ISpatialAudioMetadataItems.

C++

[out] maxValueBufferLength

The size of the largest command value defined by the metadata format.

If the method succeeds, it returns S_OK.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItems

Syntax

HRESULT GetMaxValueBufferLength( 
  [out] UINT32 *maxValueBufferLength 
); 

Parameters

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataItemsBuffer
interface (spatialaudiometadata.h)
Article07/22/2021

Provides methods for attaching buffers to SpatialAudioMetadataItems for in-place
storage of data. Get an instance of this object by passing a pointer to the interface into
ActivateSpatialAudioMetadataItems. The buffer will be associated with the returned
SpatialAudioMetadataItems. This interface allows you to attach a buffer and reset its
contents to the empty set of metadata items or attach a previously-populated buffer
and retain the data stored in the buffer.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataItemsBuffer interface inherits from the IUnknown interface.
ISpatialAudioMetadataItemsBuffer also has these types of members:

The ISpatialAudioMetadataItemsBuffer interface has these methods.

 

ISpatialAudioMetadataItemsBuffer::AttachToBuffer  

Attaches caller-provided memory for storage of ISpatialAudioMetadataItems objects.

ISpatialAudioMetadataItemsBuffer::AttachToPopulatedBuffer  

Attaches a previously populated buffer for storage of ISpatialAudioMetadataItems objects. The
metadata items already in the buffer are retained.

ISpatialAudioMetadataItemsBuffer::DetachBuffer  

Detaches the buffer. Memory can only be attached to a single metadata item at a time.

Inheritance

Methods

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataItemsBuffer::Atta
chToBuffer method
(spatialaudiometadata.h)
Article10/13/2021

Attaches caller-provided memory for storage of ISpatialAudioMetadataItems objects.

C++

[in] buffer

A pointer to memory to use for storage.

bufferLength

The length of the supplied buffer. This size must match the length required for the
metadata format and maximum metadata item count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems
has not been opened for copying
with a call to Open or the object
has been closed for writing with a
call to Close.

Syntax

HRESULT AttachToBuffer( 
  [in] BYTE   *buffer, 
       UINT32 bufferLength 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-close


Feedback

Was this page helpful?

Get help at Microsoft Q&A

SPTLAUD_MD_CLNT_E_ATTACH_FAILED_INTERNAL_BUFFER The ISpatialAudioMetadataItems
was created to use a media
pipeline internal buffer, so an
external buffer can't be attached.

SPTLAUD_MD_CLNT_E_BUFFER_ALREADY_ATTACHED The supplied buffer has already
been attached.

E_INVALIDARG One of the provided pointers is
not valid.
The supplied buffer is not large
enough to hold the maximum
number of metadata items.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItemsBuffer

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer


ISpatialAudioMetadataItemsBuffer::Attac
hToPopulatedBuffer method
(spatialaudiometadata.h)
Article10/13/2021

Attaches a previously populated buffer for storage of ISpatialAudioMetadataItems
objects. The metadata items already in the buffer are retained.

C++

[in] buffer

A pointer to memory to use for storage.

bufferLength

The length of the supplied buffer. This size must match the length required for the
metadata format and maximum metadata item count.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not
been opened for copying with a call to
Open or the object has been closed for
writing with a call to Close.

SPTLAUD_MD_CLNT_E_BUFFER_ALREADY_ATTACHED The supplied buffer has already been

Syntax

HRESULT AttachToPopulatedBuffer( 
  [in] BYTE   *buffer, 
       UINT32 bufferLength 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-close


Feedback

Was this page helpful?

Get help at Microsoft Q&A

attached.

SPTLAUD_MD_CLNT_E_ATTACH_FAILED_INTERNAL_BUFFER The ISpatialAudioMetadataItems was
created to use a media pipeline internal
buffer, so an external buffer can't be
attached.

SPTLAUD_MD_CLNT_E_FORMAT_MISMATCH The supplied populated buffer uses a
format that is different from the current
format.

E_INVALIDARG One of the provided pointers is not valid.
The supplied buffer is not large enough to
hold the maximum number of metadata
items. Call
GetSpatialAudioMetadataItemsBufferLength
to determine the required buffer size.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItemsBuffer

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-getspatialaudiometadataitemsbufferlength
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer


ISpatialAudioMetadataItemsBuffer::Deta
chBuffer method
(spatialaudiometadata.h)
Article06/29/2021

Detaches the buffer. Memory can only be attached to a single metadata item at a time.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems
has not been opened for copying
with a call to Open or the object
has been closed for writing with a
call to Close.

SPTLAUD_MD_CLNT_E_ATTACH_FAILED_INTERNAL_BUFFER The ISpatialAudioMetadataItems
was created to use a media
pipeline internal buffer which can't
be detached.

SPTLAUD_MD_CLNT_E_BUFFER_NOT_ATTACHED The supplied buffer is not
attached.

E_INVALIDARG One of the provided pointers is
not valid.
The supplied buffer is not large
enough to hold the maximum
number of metadata items.

Syntax

HRESULT DetachBuffer(); 

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataItemsBuffer

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer


ISpatialAudioMetadataReader interface
(spatialaudiometadata.h)
Article07/27/2022

Provides methods for extracting spatial audio metadata items and item command value
pairs from an ISpatialAudioMetadataItems object. The SpatialAudioMetadataItems
object, which is populated using an ISpatialAudioMetadataWriter or
ISpatialAudioMetadataCopier, has a frame count, specified with the frameCount
parameter to ActivateSpatialAudioMetadataItems, that represents the valid range of
metadata item offsets. ISpatialAudioMetadataReader enables reading back groups of
items within a subrange of the total frame count. The object maintains an internal read
position, which is advanced by the number of frames specified when read operation is
performed.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataReader interface inherits from the IUnknown interface.
ISpatialAudioMetadataReader also has these types of members:

The ISpatialAudioMetadataReader interface has these methods.

 

ISpatialAudioMetadataReader::Close  

Completes any necessary operations on the SpatialAudioMetadataItems object and releases the
object. (ISpatialAudioMetadataReader.Close)

ISpatialAudioMetadataReader::Open  

Opens an ISpatialAudioMetadataItems object for reading.

ISpatialAudioMetadataReader::ReadNextItem  

Gets the number of commands and the sample offset for the metadata item being read.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatacopier
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioMetadataReader::ReadNextItemCommand  

Reads metadata commands and value data for the current item.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


Feedback

ISpatialAudioMetadataReader::Close
method (spatialaudiometadata.h)
Article07/27/2022

Completes any necessary operations on the SpatialAudioMetadataItems object and
releases the object.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been
opened for reading with a call to Open or the object
has been closed for writing with a call to Close.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataReader

Syntax

HRESULT Close(); 

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataReader::Open
method (spatialaudiometadata.h)
Article10/13/2021

Opens an ISpatialAudioMetadataItems object for reading.

C++

[in] metadataItems

A pointer to an ISpatialAudioMetadataItems object to be opened for reading

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_ITEMS_ALREADY_OPEN Open has already been called on the supplied
ISpatialAudioMetadataItems since the object
was created or since the last call to Close.

E_INVALIDARG The provided pointer is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT Open( 
  [in] ISpatialAudioMetadataItems *metadataItems 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-close


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataReader

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


ISpatialAudioMetadataReader::ReadNex
tItem method (spatialaudiometadata.h)
Article10/13/2021

Gets the number of commands and the sample offset for the metadata item being read.

C++

[out] commandCount

Receives the number of command/value pairs in the metadata item being read.

[out] frameOffset

Gets the frame offset associated with the metadata item being read.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been
opened for reading with a call to Open or the object
has been closed for writing with a call to Close.

SPTLAUD_MD_CLNT_E_NO_MORE_ITEMS There are no more metadata items in the frame
range specified in the call to
ReadItemCountInFrames.

E_INVALIDARG One of the provided pointers is not valid.

Syntax

HRESULT ReadNextItem( 
  [out] UINT8  *commandCount, 
  [out] UINT16 *frameOffset 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-close
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt798194(v=vs.85)


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Before calling ReadNextItem, you must open the ISpatialAudioMetadataReader for
reading by calling Open after the object is created and after Close has been called. You
must also call ReadItemCountInFrames before calling ReadNextItem.

The ISpatialAudioMetadataReader keeps an internal pointer to the current position
within the total range of frames contained by the ISpatialAudioMetadataItems with
which the reader is associated. Each call to this method causes the pointer to be
advanced by the number of frames specified in the readFrameCount parameter.

The process for reading commands and the associated values is recursive. After each call
to ReadItemCountInFrames, call ReadNextItem to get the number of commands in the
next item. After every call to ReadNextItem, call ReadNextItemCommand to read each
command for the item. Repeat this process until the entire frame range of the
ISpatialAudioMetadataItems has been read.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataReader

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt798194(v=vs.85)
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-readnextitemcommand
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


ISpatialAudioMetadataReader::ReadNex
tItemCommand method
(spatialaudiometadata.h)
Article10/13/2021

Reads metadata commands and value data for the current item.

C++

[out] commandID

Receives the command ID for the current command.

[in] valueBuffer

A pointer to a buffer which receives data specific to the command as specified by the
metadata format definition. The buffer must be at least maxValueBufferLength to ensure
all commands can be successfully retrieved.

[in] maxValueBufferLength

The maximum size of a command value.

[out] valueBufferLength

The size, in bytes, of the data written to the valueBuffer parameter.

Syntax

HRESULT ReadNextItemCommand( 
  [out] BYTE   *commandID, 
  [in]  void   *valueBuffer, 
  [in]  UINT32 maxValueBufferLength, 
  [out] UINT32 *valueBufferLength
); 

Parameters

Return value



If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been
opened for reading with a call to Open or the object
has been closed for writing with a call to Close.

E_INVALIDARG One of the provided pointers is not valid.

Before calling ReadNextItem, you must open the ISpatialAudioMetadataReader for
reading by calling Open after the object is created and after Close has been called. You
must also call ReadItemCountInFrames and then call ReadNextItem before calling
ReadNextItem.

The ISpatialAudioMetadataReader keeps an internal pointer to the current position
within the total range of frames contained by the ISpatialAudioMetadataItems with
which the reader is associated. Each call to this method causes the pointer to be
advanced by the number of frames specified in the readFrameCount parameter.

The process for reading commands and the associated values is recursive. After each call
to ReadItemCountInFrames, call ReadNextItem to get the number of commands in the
next item. After every call to ReadNextItem, call ReadNextItemCommand to read each
command for the item. Repeat this process until the entire frame range of the
ISpatialAudioMetadataItems has been read.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataReader

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/mt798194(v=vs.85)
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-readnextitem
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatareader-readnextitem
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatareader


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataWriter interface
(spatialaudiometadata.h)
Article07/22/2021

Provides methods for storing spatial audio metadata items positioned within a range of
corresponding audio frames. Each metadata item has a zero-based offset position within
the specified frame. Each item can contain one or more commands specific to the
metadata format ID provided in the
SpatialAudioObjectRenderStreamForMetadataActivationParams when the
ISpatialAudioMetadataClient was created. 
This object does not allocate storage for the metadata it is provided, the caller is
expected to manage the allocation of memory used to store the packed data. Multiple
metadata items can be placed in the ISpatialAudioMetadataItems object. For each item,
call WriteNextItem followed by a call to WriteNextItemCommand.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioMetadataWriter interface inherits from the IUnknown interface.
ISpatialAudioMetadataWriter also has these types of members:

The ISpatialAudioMetadataWriter interface has these methods.

 

ISpatialAudioMetadataWriter::Close  

Completes any needed operations on the metadata buffer and releases the specified
ISpatialAudioMetadataItems object.

ISpatialAudioMetadataWriter::Open  

Opens an ISpatialAudioMetadataItems object for writing.

ISpatialAudioMetadataWriter::WriteNextItem  

Starts a new metadata item at the specified offset.

Inheritance

Methods

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataclient
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitem
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitemcommand
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nn-unknwn-iunknown


Feedback

Was this page helpful?

Get help at Microsoft Q&A

 

ISpatialAudioMetadataWriter::WriteNextItemCommand  

Writes metadata commands and value data to the current item.

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioMetadataWriter::Close
method (spatialaudiometadata.h)
Article06/29/2021

Completes any needed operations on the metadata buffer and releases the specified
ISpatialAudioMetadataItems object.

C++

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The supplied
ISpatialAudioMetadataItems has not
been opened with a call to Open.

SPTLAUD_MD_CLNT_E_NO_ITEMS_WRITTEN No metadata items have been written
to the supplied
ISpatialAudioMetadataItems.

SPTLAUD_MD_CLNT_E_ITEM_MUST_HAVE_COMMANDS No metadata commands have been
written to the supplied
ISpatialAudioMetadataItems.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT Close(); 

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataWriter

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


ISpatialAudioMetadataWriter::Open
method (spatialaudiometadata.h)
Article10/13/2021

Opens an ISpatialAudioMetadataItems object for writing.

C++

[in] metadataItems

A pointer to an ISpatialAudioMetadataItems object to be opened for writing.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_ITEMS_ALREADY_OPEN Open has already been called on the supplied
ISpatialAudioMetadataItems since the object
was created or since the last call to Close.

E_INVALIDARG The provided pointer is not valid.

   

Target Platform Windows

Header spatialaudiometadata.h

Syntax

HRESULT Open( 
  [in] ISpatialAudioMetadataItems *metadataItems 
); 

Parameters

Return value

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ISpatialAudioMetadataWriter

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


ISpatialAudioMetadataWriter::WriteNextItem
method (spatialaudiometadata.h)
Article10/13/2021

Starts a new metadata item at the specified offset.

C++

[in] frameOffset

The frame offset of the item within the range specified with the frameCount parameter to
ActivateSpatialAudioMetadataItems.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to,
the values shown in the following table.

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not been opened for
writing with a call to Open or the object has been closed for
writing with a call to Close.

SPTLAUD_MD_CLNT_E_FRAMEOFFSET_OUT_OF_RANGE The number of items written in the writing session is greater
than the value supplied in the MaxMetadataItemCount field
in the
SpatialAudioObjectRenderStreamForMetadataActivationParam
passed into ISpatialAudioClient::ActivateSpatialAudioStream.

The frameCount value is greater than the value of the
frameCount parameter to ActivateSpatialAudioMetadataItems
and the overflow mode was set to
SpatialAudioMetadataWriterOverflow_Fail.

E_INVALIDARG The value of frameOffset is not greater than the value
provided in the previous call to WriteNextItem within the
same writing session.

Syntax

HRESULT WriteNextItem( 
  [in] UINT16 frameOffset 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitem


Feedback

Was this page helpful?

Get help at Microsoft Q&A

Before calling WriteNextItem, you must open the ISpatialAudioMetadataWriter for writing by calling
Open after the object is created and after Close has been called. During a writing session demarcated
by calls to Open and Close, the value of the frameOffset parameter must be greater than the value in
the preceding call.

Within a single writing session, you must not use WriteNextItem to write more items than the value
supplied in the MaxMetadataItemCount field in the
SpatialAudioObjectRenderStreamForMetadataActivationParam passed into
ISpatialAudioClient::ActivateSpatialAudioStream or an
SPTLAUD_MD_CLNT_E_FRAMEOFFSET_OUT_OF_RANGE error will occur.

If the overflow mode is set to SpatialAudioMetadataWriterOverflow_Fail, the value of the frameOffset
parameter must be less than he value of the frameCount parameter to
ActivateSpatialAudioMetadataItems or an SPTLAUD_MD_CLNT_E_FRAMEOFFSET_OUT_OF_RANGE
error will occur.

After calling WriteNextItem, call WriteNextItemCommand to write metadata commands and value
data for the item.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataWriter

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataclient-activatespatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitemcommand
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


ISpatialAudioMetadataWriter::WriteNex
tItemCommand method
(spatialaudiometadata.h)
Article10/13/2021

Writes metadata commands and value data to the current item.

C++

[in] commandID

A command supported by the metadata format of the object. The call will fail if the
command not defined by metadata format. Each command can only be written once per
item.

[in] valueBuffer

A pointer to a buffer which stores data specific to the command as specified by the
metadata format definition.

[in] valueBufferLength

The size, in bytes, of the command data supplied in the valueBuffer parameter. The size
must match command definition specified by the metadata format or the call will fail.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Syntax

HRESULT WriteNextItemCommand( 
  [in] BYTE       commandID, 
  [in] const void *valueBuffer, 
  [in] UINT32     valueBufferLength 
); 

Parameters

Return value



Feedback

Was this page helpful?

Get help at Microsoft Q&A

Return code Description

SPTLAUD_MD_CLNT_E_NO_ITEMS_OPEN The ISpatialAudioMetadataItems has not
been opened for writing with a call to Open
or the object has been closed for writing
with a call to Close.

SPTLAUD_MD_CLNT_E_NO_ITEMOFFSET_WRITTEN WriteNextItem was not called after Open
was called and before the call to
WriteNextItemCommand.

You must open the ISpatialAudioMetadataWriter for writing by calling Open, and set the
current metadata item offset by calling WriteNextItem before calling
WriteNextItemCommand.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioMetadataWriter

Remarks

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/CoreAudio/ispatialaudiometadatawriter-close
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitem
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-open
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatawriter-writenextitem
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


ISpatialAudioObjectForMetadataComma
nds interface (spatialaudiometadata.h)
Article07/22/2021

Used to write metadata commands for spatial audio. Valid commands and value lengths
are defined by the metadata format specified in the
SpatialAudioObjectRenderStreamForMetadataActivationParams when the
ISpatialAudioObjectRenderStreamForMetadata was created.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectForMetadataCommands interface inherits from
ISpatialAudioObjectBase. ISpatialAudioObjectForMetadataCommands also has these
types of members:

The ISpatialAudioObjectForMetadataCommands interface has these methods.

 

ISpatialAudioObjectForMetadataCommands::WriteNextMetadataCommand  

Writes a metadata command to the spatial audio object, each command may only be added once
per object per processing cycle.

 

Inheritance

Methods

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectBase interface.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectrenderstreamformetadata


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h (include Spatialaudioclient.h)

ISpatialAudioObjectBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectForMetadataComma
nds::WriteNextMetadataCommand
method (spatialaudiometadata.h)
Article10/13/2021

Writes a metadata command to the spatial audio object, each command may only be
added once per object per processing cycle. Valid commands and value lengths are
defined by the metadata format specified in the
SpatialAudioObjectRenderStreamForMetadataActivationParams when the
ISpatialAudioObjectRenderStreamForMetadata was created.

C++

[in] commandID

The ID of the metadata command.

[in] valueBuffer

The buffer containing the value data for the metadata command.

[in] valueBufferLength

The length of the valueBuffer.

If the method succeeds, it returns S_OK.

Syntax

HRESULT WriteNextMetadataCommand(
  [in] BYTE   commandID, 
  [in] void   *valueBuffer, 
  [in] UINT32 valueBufferLength 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectrenderstreamformetadata


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiometadata.h (include Spatialaudioclient.h)

ISpatialAudioObjectForMetadataCommands

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadatacommands


ISpatialAudioObjectForMetadataItems
interface (spatialaudiometadata.h)
Article07/22/2021

Used to write spatial audio metadata for applications that require multiple metadata
items per buffer with frame-accurate placement. The data written via this interface must
adhere to the format defined by the metadata format specified in the
SpatialAudioObjectRenderStreamForMetadataActivationParams when the
ISpatialAudioObjectRenderStreamForMetadata was created.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectForMetadataItems interface inherits from
ISpatialAudioObjectBase. ISpatialAudioObjectForMetadataItems also has these types of
members:

The ISpatialAudioObjectForMetadataItems interface has these methods.

 

ISpatialAudioObjectForMetadataItems::GetSpatialAudioMetadataItems  

Gets a pointer to the ISpatialAudioMetadataItems object which stores metadata items for the
ISpatialAudioObjectForMetadataItems.

 

Inheritance

Methods

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectBase interface.

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectrenderstreamformetadata


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h (include Spatialaudioclient.h)

ISpatialAudioObjectBase

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectForMetadataItems::
GetSpatialAudioMetadataItems method
(spatialaudiometadata.h)
Article10/13/2021

Gets a pointer to the ISpatialAudioMetadataItems object which stores metadata items
for the ISpatialAudioObjectForMetadataItems.

C++

[out] metadataItems

Receives a pointer to the ISpatialAudioMetadataItems associated with the
ISpatialAudioObjectForMetadataItems.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are
not limited to, the values shown in the following table.

Return code Description

E_POINTER The supplied pointer is invalid.

The client must free this object when it is no longer being used by calling Release.

Syntax

HRESULT GetSpatialAudioMetadataItems( 
  [out] ISpatialAudioMetadataItems **metadataItems 
); 

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Target Platform Windows

Header spatialaudiometadata.h (include Spatialaudioclient.h)

ISpatialAudioObjectForMetadataItems

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems


ISpatialAudioObjectRenderStreamForMe
tadata interface
(spatialaudiometadata.h)
Article02/16/2023

Provides methods for controlling a spatial audio object render stream for metadata,
including starting, stopping, and resetting the stream. Also provides methods for
activating new ISpatialAudioObjectForMetadataCommands and
ISpatialAudioObjectForMetadataItems instances and notifying the system when you are
beginning and ending the process of updating activated spatial audio objects and data.

This interface is a part of Windows Sonic, Microsoft’s audio platform for more immersive
audio which includes integrated spatial sound on Xbox and Windows.

The ISpatialAudioObjectRenderStreamForMetadata interface inherits from the
ISpatialAudioObjectRenderStreamBase interface.

The ISpatialAudioObjectRenderStreamForMetadata interface has these methods.

 

ISpatialAudioObjectRenderStreamForMetadata::ActivateSpatialAudioObjectForMetadataCommands

Activate an ISpatialAudioObjectForMetadataCommands for rendering.

ISpatialAudioObjectRenderStreamForMetadata::ActivateSpatialAudioObjectForMetadataItems  

Activate an ISpatialAudioObjectForMetadataItems for rendering.

 

Inheritance

Methods

Remarks

Note  Many of the methods provided by this interface are implemented in the
inherited ISpatialAudioObjectRenderStreamBase interface.

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadatacommands
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows 10, version 1703 [desktop apps only]

Minimum supported server Windows Server 2016 [desktop apps only]

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioObjectRenderStreamBase

Requirements

See also

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamForMetada
ta::ActivateSpatialAudioObjectForMetadataC
ommands method (spatialaudiometadata.h)
Article10/13/2021

Activate an ISpatialAudioObjectForMetadataCommands for rendering.

C++

[in] type

The type of audio object to activate. For dynamic audio objects, this value must be
AudioObjectType_Dynamic. For static audio objects, specify one of the static audio channel values
from the enumeration. Specifying AudioObjectType_None will produce an audio object that is not
spatialized.

[out] audioObject

Receives a pointer to the activated interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited
to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_NO_MORE_OBJECTS The maximum number of simultaneous spatial audio objects
has been exceeded. Call Release on unused audio objects
before attempting to activate additional objects.

SPTLAUDCLNT_E_STATIC_OBJECT_NOT_AVAILABLE The static channel specified in the type parameter was not
included in the StaticObjectTypeMask field of the
SpatialAudioObjectRenderStreamForMetadataActivationParams
passed into ISpatialAudioClient::ActivateSpatialAudioStream.

Syntax

HRESULT ActivateSpatialAudioObjectForMetadataCommands( 
  [in]  AudioObjectType                        type, 
  [out] ISpatialAudioObjectForMetadataCommands **audioObject 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadatacommands
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream


Feedback

SPTLAUDCLNT_E_OBJECT_ALREADY_ACTIVE A spatial audio object has already been activated for the static
channel specified in the type parameter.

E_POINTER The supplied pointer is invalid.

E_INVALIDARG The value specified in the type parameter is not one of the
values defined by the AudioObjectType enumeration.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial audio
stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the audio
hardware or associated hardware resources have been
reconfigured, disabled, removed, or otherwise made
unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses an
unsupported format.

A dynamic ISpatialAudioObjectForMetadataCommands is one that was activated by setting the
type parameter to the ActivateSpatialAudioObjectForMetadataCommands method to
AudioObjectType_Dynamic. The client has a limit of the maximum number of dynamic spatial
audio objects that can be activated at one time. After the limit has been reached, attempting to
activate additional audio objects will result in this method returning an
SPTLAUDCLNT_E_NO_MORE_OBJECTS error. To avoid this, call Release on each dynamic
ISpatialAudioObjectForMetadataCommands after it is no longer being used to free up the
resource so that it can be reallocated. See ISpatialAudioObjectBase::IsActive and
ISpatialAudioObjectBase::SetEndOfStream for more information on the managing the lifetime of
spatial audio objects.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioObjectForMetadataItems

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadatacommands
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-isactive
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


ISpatialAudioObjectRenderStreamForMetada
ta::ActivateSpatialAudioObjectForMetadataIt
ems method (spatialaudiometadata.h)
Article10/13/2021

Activate an ISpatialAudioObjectForMetadataItems for rendering.

C++

[in] type

The type of audio object to activate. For dynamic audio objects, this value must be
AudioObjectType_Dynamic. For static audio objects, specify one of the static audio channel values
from the enumeration. Specifying AudioObjectType_None will produce an audio object that is not
spatialized.

[out] audioObject

Receives a pointer to the activated interface.

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited
to, the values shown in the following table.

Return code Description

SPTLAUDCLNT_E_NO_MORE_OBJECTS The maximum number of simultaneous spatial audio objects
has been exceeded. Call Release on unused audio objects
before attempting to activate additional objects.

SPTLAUDCLNT_E_STATIC_OBJECT_NOT_AVAILABLE The static channel specified in the type parameter was not
included in the StaticObjectTypeMask field of the
SpatialAudioObjectRenderStreamForMetadataActivationParams
passed into ISpatialAudioClient::ActivateSpatialAudioStream.

Syntax

HRESULT ActivateSpatialAudioObjectForMetadataItems( 
  [in]  AudioObjectType                     type, 
  [out] ISpatialAudioObjectForMetadataItems **audioObject 
); 

Parameters

Return value

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/ns-spatialaudiometadata-spatialaudioobjectrenderstreamformetadataactivationparams
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream


Feedback

SPTLAUDCLNT_E_OBJECT_ALREADY_ACTIVE A spatial audio object has already been activated for the static
channel specified in the type parameter.

E_POINTER The supplied pointer is invalid.

E_INVALIDARG The value specified in the type parameter is not one of the
values defined by the AudioObjectType enumeration.

SPTLAUDCLNT_E_DESTROYED The ISpatialAudioClient associated with the spatial audio
stream has been destroyed.

AUDCLNT_E_DEVICE_INVALIDATED The audio endpoint device has been unplugged, or the audio
hardware or associated hardware resources have been
reconfigured, disabled, removed, or otherwise made
unavailable for use.

SPTLAUDCLNT_E_INTERNAL An internal error has occurred.

AUDCLNT_E_UNSUPPORTED_FORMAT The media associated with the spatial audio stream uses an
unsupported format.

A dynamic ISpatialAudioObjectForMetadataItems is one that was activated by setting the type
parameter to the ActivateSpatialAudioObjectForMetadataItems method to
AudioObjectType_Dynamic. The client has a limit of the maximum number of dynamic spatial
audio objects that can be activated at one time. After the limit has been reached, attempting to
activate additional audio objects will result in this method returning an
SPTLAUDCLNT_E_NO_MORE_OBJECTS error. To avoid this, call Release on each dynamic
ISpatialAudioObjectForMetadataItems after it is no longer being used to free up the resource so
that it can be reallocated. See ISpatialAudioObjectBase::IsActive and
ISpatialAudioObjectBase::SetEndOfStream for more information on the managing the lifetime of
spatial audio objects.

   

Target Platform Windows

Header spatialaudiometadata.h

ISpatialAudioObjectForMetadataItems

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/ne-spatialaudioclient-audioobjecttype
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-isactive
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioobjectbase-setendofstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudioobjectformetadataitems


Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioMetadataCopyMode
enumeration (spatialaudiometadata.h)
Article01/31/2022

Specifies the copy mode used when calling
ISpatialAudioMetadataCopier::CopyMetadataForFrames.

C++

 

SpatialAudioMetadataCopy_Overwrite  
Value: 0 
Creates a direct copy of the number of metadata items specified with the copyFrameCount
parameter into destination buffer, overwriting any previously existing data.

SpatialAudioMetadataCopy_Append  
Performs an append operation which will fail if the resulting ISpatialAudioMetadataItemsBuffer
has too many items.

SpatialAudioMetadataCopy_AppendMergeWithLast  
Performs an append operation, and if overflow occurs, extra items are merged into last item,
adopting last merged item's offset value.

SpatialAudioMetadataCopy_AppendMergeWithFirst  
Performs an append operation, and if overflow occurs, extra items are merged, assigning the
offset to the offset of the first non-overflow item.

Syntax

typedef enum SpatialAudioMetadataCopyMode { 
  SpatialAudioMetadataCopy_Overwrite = 0, 
  SpatialAudioMetadataCopy_Append, 
  SpatialAudioMetadataCopy_AppendMergeWithLast, 
  SpatialAudioMetadataCopy_AppendMergeWithFirst 
} ; 

Constants

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadatacopier-copymetadataforframes
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitemsbuffer


Feedback

Was this page helpful?

Get help at Microsoft Q&A

      

Header spatialaudiometadata.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioMetadataItemsInfo
structure (spatialaudiometadata.h)
Article06/24/2021

Provides information about an ISpatialAudioMetadataItems object. Get a copy of this
structure by calling GetInfo.

C++

FrameCount

The total frame count, which defines valid item offsets.

ItemCount

The current number of items stored.

The maximum number of items allowed.

The size of the largest command value defined by the metadata format.

MaxItemCount

MaxValueBufferLength

Syntax

typedef struct SpatialAudioMetadataItemsInfo { 
  UINT16 FrameCount; 
  UINT16 ItemCount; 
  UINT16 MaxItemCount; 
  UINT32 MaxValueBufferLength; 
} SpatialAudioMetadataItemsInfo; 

Members

MaxItemCount

MaxValueBufferLength

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadataitems
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nf-spatialaudiometadata-ispatialaudiometadataitems-getinfo


Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Header spatialaudiometadata.h

Requirements

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioMetadataWriterOverflowM
ode enumeration
(spatialaudiometadata.h)
Article01/31/2022

Specifies the desired behavior when an ISpatialAudioMetadataWriter attempts to write
more items into the metadata buffer than was specified when the client was initialized.

C++

 

SpatialAudioMetadataWriterOverflow_Fail  
Value: 0 
The write operation will fail.

SpatialAudioMetadataWriterOverflow_MergeWithNew  
The write operation will succeed, the overflow item will be merged with previous item and adopt
the frame offset of newest item.

SpatialAudioMetadataWriterOverflow_MergeWithLast  
The write operation will succeed, the overflow item will be merged with previous item and keep
the existing frame offset.

   

Header spatialaudiometadata.h

Syntax

typedef enum SpatialAudioMetadataWriterOverflowMode { 
  SpatialAudioMetadataWriterOverflow_Fail = 0, 
  SpatialAudioMetadataWriterOverflow_MergeWithNew, 
  SpatialAudioMetadataWriterOverflow_MergeWithLast 
} ; 

Constants

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudiometadata/nn-spatialaudiometadata-ispatialaudiometadatawriter


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioObjectRenderStreamForMe
tadataActivationParams structure
(spatialaudiometadata.h)
Article06/24/2021

Represents activation parameters for a spatial audio render stream for metadata. Pass
this structure to ISpatialAudioClient::ActivateSpatialAudioStream when activating a
stream.

C++

ObjectFormat

Format descriptor for a single spatial audio object. All objects used by the stream must
have the same format and the format must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

Syntax

typedef struct SpatialAudioObjectRenderStreamForMetadataActivationParams { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  GUID                                  MetadataFormatId; 
  UINT16                                MaxMetadataItemCount; 
  const PROPVARIANT                     *MetadataActivationParams;
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
} SpatialAudioObjectRenderStreamForMetadataActivationParams; 

Members

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible


The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously,
ISpatialAudioClient::ActivateSpatialAudioStream will fail with this error
SPTLAUDCLNT_E_NO_MORE_OBJECTS.

MaxDynamicObjectCount

The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioObjectRenderStream.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

MetadataFormatId

The identifier of the metadata format for the currently active spatial rendering engine.

MaxMetadataItemCount

The maximum number of metadata items per frame.

MetadataActivationParams

Additional activation parameters.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioObjectRenderStream. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

   

Header spatialaudiometadata.h

Requirements

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


Feedback

Was this page helpful?

Get help at Microsoft Q&A

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/


SpatialAudioObjectRenderStreamForMe
tadataActivationParams2 structure
(spatialaudiometadata.h)
Article02/26/2022

Represents activation parameters for a spatial audio render stream for metadata,
extending SpatialAudioObjectRenderStreamForMetadataActivationParams
(spatialaudiometadata.h) with the ability to specify stream options.

C++

ObjectFormat

Format descriptor for a single spatial audio object. All objects used by the stream must
have the same format and the format must be of type WAVEFORMATEX or
WAVEFORMATEXTENSIBLE.

StaticObjectTypeMask

A bitwise combination of AudioObjectType values indicating the set of static spatial
audio channels that will be allowed by the activated stream.

MinDynamicObjectCount

Syntax

typedef struct SpatialAudioObjectRenderStreamForMetadataActivationParams2 { 
  const WAVEFORMATEX                    *ObjectFormat; 
  AudioObjectType                       StaticObjectTypeMask; 
  UINT32                                MinDynamicObjectCount; 
  UINT32                                MaxDynamicObjectCount; 
  AUDIO_STREAM_CATEGORY                 Category; 
  HANDLE                                EventHandle; 
  GUID                                  MetadataFormatId; 
  UINT32                                MaxMetadataItemCount; 
  const PROPVARIANT                     *MetadataActivationParams;
  ISpatialAudioObjectRenderStreamNotify *NotifyObject; 
  SPATIAL_AUDIO_STREAM_OPTIONS          Options; 
} SpatialAudioObjectRenderStreamForMetadataActivationParams2; 

Members

https://learn.microsoft.com/en-us/windows/win32/api/mmreg/ns-mmreg-waveformatex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-waveformatextensible


The minimum number of concurrent dynamic objects. If this number of dynamic audio
objects can't be activated simultaneously,
ISpatialAudioClient::ActivateSpatialAudioStream will fail with this error
SPTLAUDCLNT_E_NO_MORE_OBJECTS.

MaxDynamicObjectCount

The maximum number of concurrent dynamic objects that can be activated with
ISpatialAudioObjectRenderStream.

Category

The category of the audio stream and its spatial audio objects.

EventHandle

The event that will signal the client to provide more audio data. This handle will be
duplicated internally before it is used.

MetadataFormatId

The identifier of the metadata format for the currently active spatial rendering engine.

MaxMetadataItemCount

The maximum number of metadata items per frame.

MetadataActivationParams

Additional activation parameters.

NotifyObject

The object that provides notifications for spatial audio clients to respond to changes in
the state of an ISpatialAudioObjectRenderStream. This object is used to notify clients
that the number of dynamic spatial audio objects that can be activated concurrently is
about to change.

Options

A member of the SPATIAL_AUDIO_STREAM_OPTIONS emumeration, specifying options
for the activated audio stream.

The following example shows how to activate a metadata stream with stream options.

Remarks

https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nf-spatialaudioclient-ispatialaudioclient-activatespatialaudiostream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream
https://learn.microsoft.com/en-us/windows/desktop/api/spatialaudioclient/nn-spatialaudioclient-ispatialaudioobjectrenderstream


C++

   

void CreateSpatialAudioObjectRenderStreamForMetadata( 
    _In_ ISpatialAudioClient2* spatialAudioClient, 
    _In_ WAVEFORMATEX const* objectFormat, 
    AudioObjectType staticObjectTypeMask, 
    UINT32 minDynamicObjectCount,
    UINT32 maxDynamicObjectCount,
    AUDIO_STREAM_CATEGORY streamCategory, 
    _In_ HANDLE eventHandle, 
    REFGUID metadataFormatId, 
    UINT32 maxMetadataItemCount, 
    _In_opt_ PROPVARIANT const* metadataActivationParams, 
    _In_opt_ ISpatialAudioObjectRenderStreamNotify* notifyObject, 
    bool enableOffload, 
    _COM_Outptr_ ISpatialAudioObjectRenderStreamForMetadata** stream) 
{ 
    SpatialAudioObjectRenderStreamForMetadataActivationParams2 
streamActivationParams = 
    { 
        objectFormat, 
        staticObjectTypeMask, 
        minDynamicObjectCount, 
        maxDynamicObjectCount, 
        streamCategory, 
        eventHandle, 
        metadataFormatId, 
        maxMetadataItemCount, 
        metadataActivationParams,
        notifyObject, 
        enableOffload ? SPATIAL_AUDIO_STREAM_OPTIONS_OFFLOAD : 
SPATIAL_AUDIO_STREAM_OPTIONS_NONE
    }; 

    PROPVARIANT activateParamsPropVariant = {}; 
    activateParamsPropVariant.vt = VT_BLOB; 
    activateParamsPropVariant.blob.cbSize = sizeof(streamActivationParams); 
    activateParamsPropVariant.blob.pBlobData = reinterpret_cast<BYTE*>
(&streamActivationParams); 

    *stream = nullptr; 
    THROW_IF_FAILED(spatialAudioClient-
>ActivateSpatialAudioStream(&activateParamsPropVariant, 
IID_PPV_ARGS(stream))); 
} 

Requirements



Feedback

Was this page helpful?

Get help at Microsoft Q&A

   

Minimum supported client Windows Build 22000

Header spatialaudiometadata.h

ﾂ Yes ﾄ No

https://learn.microsoft.com/answers/products/

	Core Audio APIs
	Audioclient.h
	Overview
	_AUDCLNT_BUFFERFLAGS enumeration
	AUDCLNT_STREAMOPTIONS enumeration
	AUDIO_DUCKING_OPTIONS enumeration
	AUDIO_EFFECT structure
	AUDIO_EFFECT_STATE enumeration
	IAcousticEchoCancellationControl interface
	Overview
	IAcousticEchoCancellationControl::SetEchoCancellationRenderEndpoint method

	IAudioCaptureClient interface
	Overview
	IAudioCaptureClient::GetBuffer method
	IAudioCaptureClient::GetNextPacketSize method
	IAudioCaptureClient::ReleaseBuffer method

	IAudioClient interface
	Overview
	IAudioClient::GetBufferSize method
	IAudioClient::GetCurrentPadding method
	IAudioClient::GetDevicePeriod method
	IAudioClient::GetMixFormat method
	IAudioClient::GetService method
	IAudioClient::GetStreamLatency method
	IAudioClient::Initialize method
	IAudioClient::IsFormatSupported method
	IAudioClient::Reset method
	IAudioClient::SetEventHandle method
	IAudioClient::Start method
	IAudioClient::Stop method

	IAudioClient2 interface
	Overview
	IAudioClient2::GetBufferSizeLimits method
	IAudioClient2::IsOffloadCapable method
	IAudioClient2::SetClientProperties method

	IAudioClient3 interface
	Overview
	IAudioClient3::GetCurrentSharedModeEnginePeriod method
	IAudioClient3::GetSharedModeEnginePeriod method
	IAudioClient3::InitializeSharedAudioStream method

	IAudioClientDuckingControl interface
	Overview
	IAudioClientDuckingControl::SetDuckingOptionsForCurrentStream method

	IAudioClock interface
	Overview
	IAudioClock::GetCharacteristics method
	IAudioClock::GetFrequency method
	IAudioClock::GetPosition method

	IAudioClock2 interface
	Overview
	IAudioClock2::GetDevicePosition method

	IAudioClockAdjustment interface
	Overview
	IAudioClockAdjustment::SetSampleRate method

	IAudioEffectsChangedNotificationClient interface
	Overview
	IAudioEffectsChangedNotificationClient::OnAudioEffectsChanged method

	IAudioEffectsManager interface
	Overview
	IAudioEffectsManager::GetAudioEffects method
	IAudioEffectsManager::RegisterAudioEffectsChangedNotificationCallback method
	IAudioEffectsManager::UnregisterAudioEffectsChangedNotificationCallback method

	IAudioRenderClient interface
	Overview
	IAudioRenderClient::GetBuffer method
	IAudioRenderClient::ReleaseBuffer method

	IAudioStreamVolume interface
	Overview
	IAudioStreamVolume::GetAllVolumes method
	IAudioStreamVolume::GetChannelCount method
	IAudioStreamVolume::GetChannelVolume method
	IAudioStreamVolume::SetAllVolumes method
	IAudioStreamVolume::SetChannelVolume method

	IAudioViewManagerService interface
	Overview
	IAudioViewManagerService::SetAudioStreamWindow method

	IChannelAudioVolume interface
	Overview
	IChannelAudioVolume::GetAllVolumes method
	IChannelAudioVolume::GetChannelCount method
	IChannelAudioVolume::GetChannelVolume method
	IChannelAudioVolume::SetAllVolumes method
	IChannelAudioVolume::SetChannelVolume method

	ISimpleAudioVolume interface
	Overview
	ISimpleAudioVolume::GetMasterVolume method
	ISimpleAudioVolume::GetMute method
	ISimpleAudioVolume::SetMasterVolume method
	ISimpleAudioVolume::SetMute method


	Audioclientactivationparams.h
	Overview
	AUDIOCLIENT_ACTIVATION_PARAMS structure
	AUDIOCLIENT_ACTIVATION_TYPE enumeration
	AUDIOCLIENT_PROCESS_LOOPBACK_PARAMS structure
	PROCESS_LOOPBACK_MODE enumeration

	Audioendpoints.h
	Overview
	IAudioEndpointFormatControl interface
	Overview
	IAudioEndpointFormatControl::ResetToDefault method


	Audioenginebaseapo.h
	Overview

	Audioengineendpoint.h
	Overview
	IAudioEndpointLastBufferControl interface
	Overview
	IAudioEndpointLastBufferControl::IsLastBufferControlSupported method
	IAudioEndpointLastBufferControl::ReleaseOutputDataPointerForLastBuffer method

	IAudioEndpointOffloadStreamMeter interface
	Overview
	IAudioEndpointOffloadStreamMeter::GetMeterChannelCount method
	IAudioEndpointOffloadStreamMeter::GetMeteringData method

	IAudioEndpointOffloadStreamMute interface
	Overview
	IAudioEndpointOffloadStreamMute::GetMute method
	IAudioEndpointOffloadStreamMute::SetMute method

	IAudioEndpointOffloadStreamVolume interface
	Overview
	IAudioEndpointOffloadStreamVolume::GetChannelVolumes method
	IAudioEndpointOffloadStreamVolume::GetVolumeChannelCount method
	IAudioEndpointOffloadStreamVolume::SetChannelVolumes method

	IAudioLfxControl interface
	Overview
	IAudioLfxControl::GetLocalEffectsState method
	IAudioLfxControl::SetLocalEffectsState method

	IHardwareAudioEngineBase interface
	Overview
	IHardwareAudioEngineBase::GetAvailableOffloadConnectorCount method
	IHardwareAudioEngineBase::GetEngineFormat method
	IHardwareAudioEngineBase::GetGfxState method
	IHardwareAudioEngineBase::SetEngineDeviceFormat method
	IHardwareAudioEngineBase::SetGfxState method


	Audiopolicy.h
	Overview
	IAudioSessionControl interface
	Overview
	IAudioSessionControl::GetDisplayName method
	IAudioSessionControl::GetGroupingParam method
	IAudioSessionControl::GetIconPath method
	IAudioSessionControl::GetState method
	IAudioSessionControl::RegisterAudioSessionNotification method
	IAudioSessionControl::SetDisplayName method
	IAudioSessionControl::SetGroupingParam method
	IAudioSessionControl::SetIconPath method
	IAudioSessionControl::UnregisterAudioSessionNotification method

	IAudioSessionControl2 interface
	Overview
	IAudioSessionControl2::GetProcessId method
	IAudioSessionControl2::GetSessionIdentifier method
	IAudioSessionControl2::GetSessionInstanceIdentifier method
	IAudioSessionControl2::IsSystemSoundsSession method
	IAudioSessionControl2::SetDuckingPreference method

	IAudioSessionEnumerator interface
	Overview
	IAudioSessionEnumerator::GetCount method
	IAudioSessionEnumerator::GetSession method

	IAudioSessionEvents interface
	Overview
	IAudioSessionEvents::OnChannelVolumeChanged method
	IAudioSessionEvents::OnDisplayNameChanged method
	IAudioSessionEvents::OnGroupingParamChanged method
	IAudioSessionEvents::OnIconPathChanged method
	IAudioSessionEvents::OnSessionDisconnected method
	IAudioSessionEvents::OnSimpleVolumeChanged method
	IAudioSessionEvents::OnStateChanged method

	IAudioSessionManager interface
	Overview
	IAudioSessionManager::GetAudioSessionControl method
	IAudioSessionManager::GetSimpleAudioVolume method

	IAudioSessionManager2 interface
	Overview
	IAudioSessionManager2::GetSessionEnumerator method
	IAudioSessionManager2::RegisterDuckNotification method
	IAudioSessionManager2::RegisterSessionNotification method
	IAudioSessionManager2::UnregisterDuckNotification method
	IAudioSessionManager2::UnregisterSessionNotification method

	IAudioSessionNotification interface
	Overview
	IAudioSessionNotification::OnSessionCreated method

	IAudioVolumeDuckNotification interface
	Overview
	IAudioVolumeDuckNotification::OnVolumeDuckNotification method
	IAudioVolumeDuckNotification::OnVolumeUnduckNotification method


	Audiosessiontypes.h
	Overview
	AUDCLNT_SHAREMODE enumeration
	AUDIO_STREAM_CATEGORY enumeration
	AudioSessionState enumeration

	Audiostatemonitorapi.h
	Overview
	AudioStateMonitorCallback callback function
	AudioStateMonitorSoundLevel enumeration
	CreateCaptureAudioStateMonitor function
	CreateCaptureAudioStateMonitorForCategory function
	CreateCaptureAudioStateMonitorForCategoryAndDeviceId function
	CreateCaptureAudioStateMonitorForCategoryAndDeviceRole function
	CreateRenderAudioStateMonitor function
	CreateRenderAudioStateMonitorForCategory function
	CreateRenderAudioStateMonitorForCategoryAndDeviceId function
	CreateRenderAudioStateMonitorForCategoryAndDeviceRole function
	IAudioStateMonitor interface
	Overview
	IAudioStateMonitor::GetSoundLevel method
	IAudioStateMonitor::RegisterCallback method
	IAudioStateMonitor::UnregisterCallback method


	Devicetopology.h
	Overview
	ConnectorType enumeration
	DataFlow enumeration
	IAudioAutoGainControl interface
	Overview
	IAudioAutoGainControl::GetEnabled method
	IAudioAutoGainControl::SetEnabled method

	IAudioBass interface
	IAudioChannelConfig interface
	Overview
	IAudioChannelConfig::GetChannelConfig method
	IAudioChannelConfig::SetChannelConfig method

	IAudioInputSelector interface
	Overview
	IAudioInputSelector::GetSelection method
	IAudioInputSelector::SetSelection method

	IAudioLoudness interface
	Overview
	IAudioLoudness::GetEnabled method
	IAudioLoudness::SetEnabled method

	IAudioMidrange interface
	IAudioMute interface
	Overview
	IAudioMute::GetMute method
	IAudioMute::SetMute method

	IAudioOutputSelector interface
	Overview
	IAudioOutputSelector::GetSelection method
	IAudioOutputSelector::SetSelection method

	IAudioPeakMeter interface
	Overview
	IAudioPeakMeter::GetChannelCount method
	IAudioPeakMeter::GetLevel method

	IAudioTreble interface
	IAudioVolumeLevel interface
	IConnector interface
	Overview
	IConnector::ConnectTo method
	IConnector::Disconnect method
	IConnector::GetConnectedTo method
	IConnector::GetConnectorIdConnectedTo method
	IConnector::GetDataFlow method
	IConnector::GetDeviceIdConnectedTo method
	IConnector::GetType method
	IConnector::IsConnected method

	IControlChangeNotify interface
	Overview
	IControlChangeNotify::OnNotify method

	IControlInterface interface
	Overview
	IControlInterface::GetIID method
	IControlInterface::GetName method

	IDeviceSpecificProperty interface
	Overview
	IDeviceSpecificProperty::Get4BRange method
	IDeviceSpecificProperty::GetType method
	IDeviceSpecificProperty::GetValue method
	IDeviceSpecificProperty::SetValue method

	IDeviceTopology interface
	Overview
	IDeviceTopology::GetConnector method
	IDeviceTopology::GetConnectorCount method
	IDeviceTopology::GetDeviceId method
	IDeviceTopology::GetPartById method
	IDeviceTopology::GetSignalPath method
	IDeviceTopology::GetSubunit method
	IDeviceTopology::GetSubunitCount method

	IKsFormatSupport interface
	Overview
	IKsFormatSupport::GetDevicePreferredFormat method
	IKsFormatSupport::IsFormatSupported method

	IKsJackDescription interface
	Overview
	IKsJackDescription::GetJackCount method
	IKsJackDescription::GetJackDescription method

	IKsJackDescription2 interface
	Overview
	IKsJackDescription2::GetJackCount method
	IKsJackDescription2::GetJackDescription2 method

	IKsJackSinkInformation interface
	Overview
	IKsJackSinkInformation::GetJackSinkInformation method

	IPart interface
	Overview
	IPart::Activate method
	IPart::EnumPartsIncoming method
	IPart::EnumPartsOutgoing method
	IPart::GetControlInterface method
	IPart::GetControlInterfaceCount method
	IPart::GetGlobalId method
	IPart::GetLocalId method
	IPart::GetName method
	IPart::GetPartType method
	IPart::GetSubType method
	IPart::GetTopologyObject method
	IPart::RegisterControlChangeCallback method
	IPart::UnregisterControlChangeCallback method

	IPartsList interface
	Overview
	IPartsList::GetCount method
	IPartsList::GetPart method

	IPerChannelDbLevel interface
	Overview
	IPerChannelDbLevel::GetChannelCount method
	IPerChannelDbLevel::GetLevel method
	IPerChannelDbLevel::GetLevelRange method
	IPerChannelDbLevel::SetLevel method
	IPerChannelDbLevel::SetLevelAllChannels method
	IPerChannelDbLevel::SetLevelUniform method

	ISubunit interface
	KSJACK_DESCRIPTION structure
	KSJACK_DESCRIPTION2 structure
	KSJACK_SINK_CONNECTIONTYPE enumeration
	KSJACK_SINK_INFORMATION structure
	LUID structure
	PartType enumeration

	Endpointvolume.h
	Overview
	AUDIO_VOLUME_NOTIFICATION_DATA structure
	IAudioEndpointVolume interface
	Overview
	IAudioEndpointVolume::GetChannelCount method
	IAudioEndpointVolume::GetChannelVolumeLevel method
	IAudioEndpointVolume::GetChannelVolumeLevelScalar method
	IAudioEndpointVolume::GetMasterVolumeLevel method
	IAudioEndpointVolume::GetMasterVolumeLevelScalar method
	IAudioEndpointVolume::GetMute method
	IAudioEndpointVolume::GetVolumeRange method
	IAudioEndpointVolume::GetVolumeStepInfo method
	IAudioEndpointVolume::QueryHardwareSupport method
	IAudioEndpointVolume::RegisterControlChangeNotify method
	IAudioEndpointVolume::SetChannelVolumeLevel method
	IAudioEndpointVolume::SetChannelVolumeLevelScalar method
	IAudioEndpointVolume::SetMasterVolumeLevel method
	IAudioEndpointVolume::SetMasterVolumeLevelScalar method
	IAudioEndpointVolume::SetMute method
	IAudioEndpointVolume::UnregisterControlChangeNotify method
	IAudioEndpointVolume::VolumeStepDown method
	IAudioEndpointVolume::VolumeStepUp method

	IAudioEndpointVolumeCallback interface
	Overview
	IAudioEndpointVolumeCallback::OnNotify method

	IAudioEndpointVolumeEx interface
	Overview
	IAudioEndpointVolumeEx::GetVolumeRangeChannel method

	IAudioMeterInformation interface
	Overview
	IAudioMeterInformation::GetChannelsPeakValues method
	IAudioMeterInformation::GetMeteringChannelCount method
	IAudioMeterInformation::GetPeakValue method
	IAudioMeterInformation::QueryHardwareSupport method


	Mmdeviceapi.h
	Overview
	ActivateAudioInterfaceAsync function
	AudioExtensionParams structure
	DIRECTX_AUDIO_ACTIVATION_PARAMS structure
	EDataFlow enumeration
	EndpointFormFactor enumeration
	ERole enumeration
	IActivateAudioInterfaceAsyncOperation interface
	Overview
	IActivateAudioInterfaceAsyncOperation::GetActivateResult method

	IActivateAudioInterfaceCompletionHandler interface
	Overview
	IActivateAudioInterfaceCompletionHandler::ActivateCompleted method

	IMMDevice interface
	Overview
	IMMDevice::Activate method
	IMMDevice::GetId method
	IMMDevice::GetState method
	IMMDevice::OpenPropertyStore method

	IMMDeviceCollection interface
	Overview
	IMMDeviceCollection::GetCount method
	IMMDeviceCollection::Item method

	IMMDeviceEnumerator interface
	Overview
	IMMDeviceEnumerator::EnumAudioEndpoints method
	IMMDeviceEnumerator::GetDefaultAudioEndpoint method
	IMMDeviceEnumerator::GetDevice method
	IMMDeviceEnumerator::RegisterEndpointNotificationCallback method
	IMMDeviceEnumerator::UnregisterEndpointNotificationCallback method

	IMMEndpoint interface
	Overview
	IMMEndpoint::GetDataFlow method

	IMMNotificationClient interface
	Overview
	IMMNotificationClient::OnDefaultDeviceChanged method
	IMMNotificationClient::OnDeviceAdded method
	IMMNotificationClient::OnDeviceRemoved method
	IMMNotificationClient::OnDeviceStateChanged method
	IMMNotificationClient::OnPropertyValueChanged method


	Spatialaudioclient.h
	Overview
	AudioObjectType enumeration
	IAudioFormatEnumerator interface
	Overview
	IAudioFormatEnumerator::GetCount method
	IAudioFormatEnumerator::GetFormat method

	ISpatialAudioClient interface
	Overview
	ISpatialAudioClient::ActivateSpatialAudioStream method
	ISpatialAudioClient::GetMaxDynamicObjectCount method
	ISpatialAudioClient::GetMaxFrameCount method
	ISpatialAudioClient::GetNativeStaticObjectTypeMask method
	ISpatialAudioClient::GetStaticObjectPosition method
	ISpatialAudioClient::GetSupportedAudioObjectFormatEnumerator method
	ISpatialAudioClient::IsAudioObjectFormatSupported method
	ISpatialAudioClient::IsSpatialAudioStreamAvailable method

	ISpatialAudioClient2 interface
	Overview
	ISpatialAudioClient2::GetMaxFrameCountForCategory method
	ISpatialAudioClient2::IsOffloadCapable method

	ISpatialAudioObject interface
	Overview
	ISpatialAudioObject::SetPosition method
	ISpatialAudioObject::SetVolume method

	ISpatialAudioObjectBase interface
	Overview
	ISpatialAudioObjectBase::GetAudioObjectType method
	ISpatialAudioObjectBase::GetBuffer method
	ISpatialAudioObjectBase::IsActive method
	ISpatialAudioObjectBase::SetEndOfStream method

	ISpatialAudioObjectRenderStream interface
	Overview
	ISpatialAudioObjectRenderStream::ActivateSpatialAudioObject method

	ISpatialAudioObjectRenderStreamBase interface
	Overview
	ISpatialAudioObjectRenderStreamBase::BeginUpdatingAudioObjects method
	ISpatialAudioObjectRenderStreamBase::EndUpdatingAudioObjects method
	ISpatialAudioObjectRenderStreamBase::GetAvailableDynamicObjectCount method
	ISpatialAudioObjectRenderStreamBase::GetService method
	ISpatialAudioObjectRenderStreamBase::Reset method
	ISpatialAudioObjectRenderStreamBase::Start method
	ISpatialAudioObjectRenderStreamBase::Stop method

	ISpatialAudioObjectRenderStreamNotify interface
	Overview
	ISpatialAudioObjectRenderStreamNotify::OnAvailableDynamicObjectCountChange method

	SPATIAL_AUDIO_STREAM_OPTIONS enumeration
	SpatialAudioClientActivationParams structure
	SpatialAudioObjectRenderStreamActivationParams structure
	SpatialAudioObjectRenderStreamActivationParams2 structure

	Spatialaudiohrtf.h
	Overview
	ISpatialAudioObjectForHrtf interface
	Overview
	ISpatialAudioObjectForHrtf::SetDirectivity method
	ISpatialAudioObjectForHrtf::SetDistanceDecay method
	ISpatialAudioObjectForHrtf::SetEnvironment method
	ISpatialAudioObjectForHrtf::SetGain method
	ISpatialAudioObjectForHrtf::SetOrientation method
	ISpatialAudioObjectForHrtf::SetPosition method

	ISpatialAudioObjectRenderStreamForHrtf interface
	Overview
	ISpatialAudioObjectRenderStreamForHrtf::ActivateSpatialAudioObjectForHrtf method

	SpatialAudioHrtfActivationParams structure
	SpatialAudioHrtfActivationParams2 structure
	SpatialAudioHrtfDirectivity structure
	SpatialAudioHrtfDirectivityCardioid structure
	SpatialAudioHrtfDirectivityCone structure
	SpatialAudioHrtfDirectivityType enumeration
	SpatialAudioHrtfDirectivityUnion union
	SpatialAudioHrtfDistanceDecay structure
	SpatialAudioHrtfDistanceDecayType enumeration
	SpatialAudioHrtfEnvironmentType enumeration

	Spatialaudiometadata.h
	Overview
	ISpatialAudioMetadataClient interface
	Overview
	ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataCopier method
	ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataItems method
	ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataReader method
	ISpatialAudioMetadataClient::ActivateSpatialAudioMetadataWriter method
	ISpatialAudioMetadataClient::GetSpatialAudioMetadataItemsBufferLength method

	ISpatialAudioMetadataCopier interface
	Overview
	ISpatialAudioMetadataCopier::Close method
	ISpatialAudioMetadataCopier::CopyMetadataForFrames method
	ISpatialAudioMetadataCopier::Open method

	ISpatialAudioMetadataItems interface
	Overview
	ISpatialAudioMetadataItems::GetFrameCount method
	ISpatialAudioMetadataItems::GetInfo method
	ISpatialAudioMetadataItems::GetItemCount method
	ISpatialAudioMetadataItems::GetMaxItemCount method
	ISpatialAudioMetadataItems::GetMaxValueBufferLength method

	ISpatialAudioMetadataItemsBuffer interface
	Overview
	ISpatialAudioMetadataItemsBuffer::AttachToBuffer method
	ISpatialAudioMetadataItemsBuffer::AttachToPopulatedBuffer method
	ISpatialAudioMetadataItemsBuffer::DetachBuffer method

	ISpatialAudioMetadataReader interface
	Overview
	ISpatialAudioMetadataReader::Close method
	ISpatialAudioMetadataReader::Open method
	ISpatialAudioMetadataReader::ReadNextItem method
	ISpatialAudioMetadataReader::ReadNextItemCommand method

	ISpatialAudioMetadataWriter interface
	Overview
	ISpatialAudioMetadataWriter::Close method
	ISpatialAudioMetadataWriter::Open method
	ISpatialAudioMetadataWriter::WriteNextItem method
	ISpatialAudioMetadataWriter::WriteNextItemCommand method

	ISpatialAudioObjectForMetadataCommands interface
	Overview
	ISpatialAudioObjectForMetadataCommands::WriteNextMetadataCommand method

	ISpatialAudioObjectForMetadataItems interface
	Overview
	ISpatialAudioObjectForMetadataItems::GetSpatialAudioMetadataItems method

	ISpatialAudioObjectRenderStreamForMetadata interface
	Overview
	ISpatialAudioObjectRenderStreamForMetadata::ActivateSpatialAudioObjectForMetadataCommands method
	ISpatialAudioObjectRenderStreamForMetadata::ActivateSpatialAudioObjectForMetadataItems method

	SpatialAudioMetadataCopyMode enumeration
	SpatialAudioMetadataItemsInfo structure
	SpatialAudioMetadataWriterOverflowMode enumeration
	SpatialAudioObjectRenderStreamForMetadataActivationParams structure
	SpatialAudioObjectRenderStreamForMetadataActivationParams2 structure



